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Zusammenfassung

KONTEXT Während in den letzten Jahren die Leistungsfähigkeit unserer Endgeräte
stetig stieg, bleibt die Netzwerk Bandbreite immer noch der Engpass. Aus diesem
Grund ist das Übertragen ganzer Masken einer Benutzeroberfläche (UI) keine prak-
tikable Lösung mehr. Somit geht der Trend zu Rich Client UIs, welche insbesondere
auf HTML5 Technologien basieren.

MOTIVATION Bei der Entwicklung solcher UIs haben sogar kleine Anwendungen eine
komplexe Code-Struktur und können zu Problemen bei der Softwarequalität führen.
Diese Komplexität muss bewältigt werden, um akzeptablen Code in Hinsicht auf Wie-
derverwendbarkeit und Wartbarkeit liefern zu können.

ANSATZ Eine bewährte Lösung hinsichtlich der Architektur einer solchen Anwen-
dung ist eine strikte hierarchische Dekomposition. Dabei wird eine UI auf eine Hier-
archie von Oberflächenelementen abgebildet, die wiederum auf eine Hierarchie von
Widgets, welche letztendlich auf eine Hierarchie von Darstellungselementen abgebil-
det wird.

HERAUSFORDERUNG Seit Jahrzehnten stellen UI-Toolkits die Widget-Hierarchie und
Browser die Darstellungselement-Hierarchie bereit, doch die Architektur der Kom-
ponenten und deren Kommunikation wird oft vernachlässigt. Obwohl jüngste Ent-
wicklungen einen Nutzen aus der Kombination von komponentenorientierter Archi-
tektur und der Trennung von Model und View Komponenten ziehen, besteht bei der
UI-Entwicklung immer noch eine große Diskrepanz zwischen Theorie und Praxis.

LÖSUNG Heutzutage müssen Entwickler immer noch für jeden Einzelfall eine Lö-
sung unter Berücksichtigung des verwendeten UI-Komponenten-Frameworks und des-
sen Besonderheiten erarbeiten. Ein Ansatz im Software Engineering Sinne fordert je-
doch, dass dieser wiederkehrende Vorgang durch vorbereitete und wiederverwendba-
re Kommunikationsmuster abgelöst wird. Um nun die Konformität der Implementie-
rung einer Anwendung mit eben jenen Mustern analytisch zu prüfen, wird zur Laufzeit
ein regelbasierter Constraint Checker verwendet. Die Regeln für diese Überprüfung
werden direkt von den Mustern abgeleitet und spiegeln somit das geforderte Verhal-
ten der Anwendung wieder.
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Abstract

CONTEXT Since years client devices become more and more powerful while the net-
work bandwidth is still a bottleneck. Hence transferring User Interface (UI) masks
is no longer an option. Thus, there is a strong trend towards Rich Client User Inter-
faces. Most notably, nowadays portable user interfaces are developed via the popular
HTML5 technology stack.

MOTIVATION Nevertheless, we are faced with a software quality challenge: even
small UIs, e.g., Mobile Apps, cause an inherently complex code structure. This has
to be mastered in order to guarantee reasonable code reusability and maintainability.

APPROACH From an architecture point of view, the well-proven solution is a strict
Hierarchical Composition: the UI is mapped onto a hierarchy of UI Composites, which
in turn ismapped onto a hierarchy ofWidgets, which in turn ismapped onto a hierarchy
of Display Elements.

CHALLENGE While since decades UI toolkits address the Widget hierarchy and Brow-
sers address the Display Elements, the architecture layer of UI Composites and their
communication is still often neglected. Even though recent developments greatly
leverage from the combination of Component-Orientation architecture paradigm and
Model-View Separation architecture pattern, there is still a noticeable gap between
theory and practice in UI implementation.

SOLUTION Developers currently still have to ad-hoc map from domain-specific use
cases to features the underlying UI Composite framework provides. Software Engi-
neering experience dictates that those recurring tasks should be addressed through
pre-thought-out and reusable communication patters and their constructive mapping
onto abstracted UI Composite communication features. In order to ensure the compli-
ance of an application with the set of those patterns, an analytic check during run-time
is performed using a rule-based constraint checker. Since patterns imply particular
communication paths, the constraints are directly derived from those communications.
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1. Introduction
1.1. Challenges

“Divide et impera” — Julius Caesar

According to the divide and conquer strategy, which was first used by Julius Caesar
to rule the roman empire, one big problem should be cut into smaller pieces, because
solving the whole problem at a time would be disproportionally difficult.
As this is a common approach in computer science, it is also used when building an

application. Here, the application is divided into several components, that form the ap-
plication’s architecture. An architecture can be developed from various perspectives
and at multiple levels of abstraction. Since the quality of these architectures highly
depends on finding the correct points of intersection, we try to aid the architect during
this process. Figure 1.1 displays a well known and simple looking user interface for
watching videos.

Figure 1.1.: Teasing example - YouTubeTM

Since the highlighted information is displayed in three different positions, the ques-
tions is: Which component inside our architecture is responsible to hold this data,
while simultaneously providing it to the minimum possible and maximum necessary
scope of components? With this being one of the easier questions that come up when
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1. Introduction

trying to cut an application into components, we get a small preview on what to come.
Throughout this thesis, we will answer this and even more mature questions occur-
ring during the user interfaces development. Details about the used approach are
described in Section 1.2.
The development of an architecture is only the beginning. Another question is: How

can we guarantee strict adherence to an architecture throughout the implementation
process and of course in the final version that is deployed? This question will also
be answered shortly in the next section, alongside the enforcement of certain quality
properties and behavior restrictions.

1.2. Approach
In software, everything and nothing is about quality. If a company just wants to have
quick results and does not plan for the future, then it can completely ignore any kind of
software quality. But if a minimal chance exists that the software has to be maintained
or extended, then we should consider to invest in quality during the development pro-
cess. Sure, there is a wide range, where quality can be injected into software, but as
the previous section already indicated, we focus on the component architecture and
to be even more precise: on the communication among the different components.
Our approach is to first examine already present applications and to extract sophis-

ticated solutions for reoccurring problems. This leads to a pattern catalog, which
contains information on the rationale, structure and especially the communication
scheme of each pattern. Derived from the communication, we provide constraints
that the implementation of an architecture has to adhere to, in order to guarantee
high quality and a correct realization. These constraints can either be peephole con-
straints, that focus on a single communication occurrence between two components or
temporal constraints, which allow statements about the sequence of such communica-
tion. Besides the architecture enforcement, we also give advise about checking coding
guidelines and ensuring common interfaces among components, using our developed
constraint Domain Specific Language (DSL).
Last, we introduce a tool to check these constraints at run-time. As we focus on

web based Single-Page Applications (SPA), we install a proxy server that instruments
the application code while it is loaded through it. This makes the instrumentation
completely transparent to the developer. The instrumented code supplies our tool with
the inter-component communication in real-time as well as with other application state
information, e.g. the Component Tree (CT), and the state of each component. This
communication traces, as we will introduce them later, are then checked by our tool
and output to the user.
Now, before we start refining our approach, we set the context of this thesis in

Chapter 2, including Model-View-Controller (MVC) and a component architecture as
a common procedure to implement user interfaces. After explaining the concepts of
component communication and run-time verification in Chapter 3, we proceed with
the tasks of the different component traits, Chapter 4 used in the pattern & constraint
catalog written down in Chapter 5. This catalog is completed with implementation
quality constraints in Chapter 6. Afterwards, we show the application of the catalog
in Chapter 7. Next, we look under the hood of our constraint checking algorithm in
Chapter 8. At the end, we close with a short summary and a prospect for future work,
in Chapter 9.

2



2. Context
This chapter introduces the concepts around which this thesis is built. We start with a
brief explanation of the technique to hierarchically decompose user interfaces to iden-
tify their component architecture. Then we move to the user interface architecture
ontology, which provides a common wording for the elements used in a user interface.
This is followed by the Model-View-Controller principle adapted and tied to the hier-
archical component architecture of Section 2.1. And finally we explain the features
a component system, which is ComponentJS in our case, has to provide to allow a
component based approach to build a user interface.

2.1. Hierarchical Decomposition of User Interfaces
The V-Model tells us that the first step is the requirements analysis phase, when we
start building an application (see [RB06] for details). Afterwards, the system architec-
ture has to be developed. During this process, the different components are identified
and the application is cut into handy chunks alongside these components. This is a
common approach for any type of software and quite feasible in almost all areas. The
key is always to have a good heuristic for the component identification. Here, depend-
ing on the level of abstraction, different techniques are popular. In an early stage,
a separation into several tiers can be suggested. The components of a client-sever
application can be structured into presentation, logic and data responsibilities.
User interfaces are one shape of the presentation layer from the above example.

Inside this layer, a finer granularity has to be applied and other indicators for the
component finding have to be used. One way is hierarchical decomposition. Several
publications ([HO07], [Engc], etc.) suggest this approach due to the inherent hierar-
chical character of a user interface. This hierarchy can be extracted by examining the
visual containment of the different views [Pan97], making up the whole interface.
According to [Pan97] this approach is best to be combined with the Presentation

Abstraction Control (PAC) paradigm, which introduces a hierarchy of PAC agents,
whereby each agent is responsible for the implementation of a fraction of the require-
ments. Since PAC agents are dedicated to a high level of abstraction, they cannot rep-
resent the final component architecture but only show a first aggregation. That is why
the established composition now has to be refined to the component level. This is done
by preserving the hierarchy and decomposing the agents into MVC triads, [HO07] and
[BM00]. The result is a layered architecture, where several MVC-triads are stacked
on top of each other. In [CKP00], this is called Hierarchical Model View Controller
(HMVC). As stated in [LVC89], this approach allows two ways of development sepa-
ration: the implementation of the single display components on the one hand and the
composition of them to the user interface design on the other hand. Of course, this
only works as long as an agreed composition protocol is adhered to.
Eventually, as [HC95] also approves, we can say that a user interface provides

enough space for functionality and requirements that leads to an explosion in com-

3



2. Context

plexity in the majority of cases. This can only be mastered by resorting to strong tech-
niques like the hierarchical decomposition flanked by concepts like PAC and MVC.

2.2. User Interface Architecture Ontology
An ontology, describing and linking the elements used in the user interface architec-
ture proposed by [Engd], on which many of the ideas of this thesis are based, is shown
in Figure 2.1. As the image implies, the core of this architecture is the MVC triad. We
have already mentioned this pattern in the previous section and it will accompany us
throughout the whole thesis. On the right hand side, we see model, view and controller
as the triad parts that are generalized to components, which can be nested arbitrar-
ily. They are also linked to the elements of the hierarchical decomposition on the left,
which may contain instances of themselves.
In the UI hierarchy the top level element is the UI as a whole, which is built up using

several composites. A composite is a logical group of other composites or widgets and
thus also aggregates MVC instances. The underlying widgets are the first abstraction
of the display elements. They blend these primitive graphical representations like
lines, text and geometric shapes together to more complex UI elements. Examples for
widgets are buttons, static textual content or a scrollable container.

Figure 2.1.: User Interface Architecture Ontology (Excerpt of [Engd])

Like we already outlined in Section 2.1, the UI is inherently hierarchical. This is also
reflected by the nestability of components on the one side and composites, widgets and
display elements on the other side. As mentioned in the introduction, we focus on web
applications. Hence, our display elements are mainly the nodes of the DOM tree. The
result are three tree structures.

• The DOM tree, making up the HTML elements and thus the actual graphical
representation

4



2.3. Model-View-Controller on a Component Tree

• The widget tree as an object mesh, which is the first abstraction of the DOM tree.
This tree can be provided by a UI toolkit, e.g. jQuery UI or ExtJS.

• The Component Tree, representing the component architecture, which consists
of model, view and controller instances

Of course, if any non-hierarchical technology ,e.g. Adobe FlashTM is used for the
display elements, then only the latter two trees emerge.

2.3. Model-View-Controller on a Component Tree
The patterns and constraints, proposed throughout this thesis are based on the MVC
on a Component Tree architecture approach. Since both concepts can be very in-
volving when presented at the same time, we start with the description of the MVC
paradigm. Thereafter, we move to the component tree, which will later bear the MVC
triads.

Model-View-Controller
In general, the MVC pattern is no new invention. But for the user interface component
architecture by [Enge], they introduced a slightly modified version that unites the
advantages of PAC, MVP and MVC. A comparison of the different approaches can be
found in [Gre07]. To examine the three parts of the MVC pattern, we decompose it
stepwise in a top-down fashion.

Figure 2.2.: View [Engc]

The first component is the view, shown
in Figure 2.2. As it is the component
whose testing is most expensive, it fol-
lows the suggestions from [Fowd], where
as less code as possible is put into this
impractical location. To achieve this, the
application specific behavior is relocated
to the controller andmodel [BM00]. Thus
only the different bindings have to be
set up inside the view. Technically, each
binding is deployed using observer syn-
chronization [Fowc], which utilizes the
observer pattern [BD04]. This stands antithetic to flow synchronization [Fowa], that
reduces the amount of synchronization operations, but lacks the possibility to have
more than one view of a model.
Another issue is the granularity of the observed data. If conceived too fine grained,

it floods the application with events and when conceived too coarse, small changes
cause updates to big areas, unnecessarily. For that reason the data is divided into five
binding groups, each providing the appropriate richness of detail for the categories
of tasks outlined in Table 2.1. Using this categorization of [Engc], all data required by
the view is covered and each piece of data is as precisely observed as needed [Fowf].
It also enables us to plug any arbitrary view on top of the model component as long
as it satisfies the interface formed by the underlying model. Of course there is no
free lunch and using the observer pattern for the bindings has also downsides. The

5



2. Context

Category Explanation

Mask Rendering Required to render the layout, e.g. device orientation.
Command Binding Operations triggered by the controller that entail UI actions.

State Binding Interface element states like a button being enabled or not.
It can also contain domain states like data validity. Here an
object containing the validation result is conceivable [Fowb].

Data Binding Data meant to be displayed directly in the UI. It is also up-
dated when changed in the UI.

Event Binding Special data values, indicating the occurrence of an event in
the UI, e.g. a button was clicked.

Table 2.1.: ComponentJS API methods

implicit control flow changes are hard to debug and orphaned observes may cause
memory leaks.
After having understood the view component, we head over to the presentation

model. The main task of the model is to store domain and state data. Five differ-
ent types of data are displayed in Figure 2.3, which stand in conformity with the five
bindings of the view. In compliance with [Pot], the model encapsulates the data to
form a central position for persisting and sharing and thus clearly separates the view

Figure 2.3.: Model [Engc]

from the data management. When de-
ciding which data belongs to the presen-
tation model, it is important to have a
strict separation of domain objects and
presentation objects in mind. Only the
latter are allowed to be stored in the
model, whereas the former only used in
the communication with the service fa-
cade. With all data inside the presenta-
tion model, it serves as an abstraction of
the UI, which also enables Headless Test-
ing for the user interface’s architecture

[Fowe]. The last box in Figure 2.3 is the presentation logic. In contrast to the model of
the original MVC in Smalltalk-80 [Bur92], the presented model component is not com-
pletely passive but also contains logic that enforces cross value dependencies [Fow06].

Figure 2.4.: Controller [Engc]

An example is a mutual exclusive
checked state of a checkbox group. If one
checkbox is checked, then the presenta-
tion logic switches the enabled state of
the other checkboxes to false. In addi-
tion to such pure data changes, the pre-
sentation logic can also handle events
that lack any interaction with other com-
ponents or the service facade and thus
only affect internal data [Fowg].
Last we examine the controller compo-

nent as the gateway towards the remaining application and back-end. As we can see
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2.4. Component System features

in Figure 2.4, it is split into two parts: the presentation provisioning and the presen-
tation actioning. To provide the necessary data, the presentation provisioning directly
accesses the service facade and pushes the information into the overlaying model. The
presentation actioning is similar to the presentation logic we know from the model
component. It also pulls complexity off the view to improve testability. The difference
lies in the data affected by the logic, whereby the presentation logic is only allowed
to touch internal data, the actioning has full access to the service facade and can thus
trigger server actions [Fowg]. This clear distinction of presentation logic and presen-
tation actioning is founded in the principle of Logical Separation.

Component Tree
The goal of the Component Tree is to provide a communication infrastructure among
the different components of an application. In contrast tomany approaches (e.g. [Inc]),
which use a flat event bus to transfer information between components, the Compo-
nent Tree explicitly reassembles the visual containment hierarchy of the particular UI.
This ensures a natural scoping of the events, as we will see when inspecting the dif-
ferent delivery phases. The Component Tree is founded on an artificial root element,
which hosts the remaining sub-trees of components. In the following, we have a look
at the event delivery mechanism through this structure. It is divided into three phases
inspired by the event handling within the DOM tree [Pix].

Capturing
As the first phase, it is responsible to carry the event from the root component to
the target component. Each component on the path, excluding the target compo-
nent, can listen to the event while it is traversing the Component Tree.

Targeting
Within this phase, the event is actually dispatched to the target component, which
can now perform actions given a listener was registered beforehand.

Bubbling
After hitting the target component, the event travels back to the root component.
Here all components on the path again have the opportunity to catch this event.
The target itself is excluded again.

Given these phases, the event system provides communication up- and downwards
the Component Tree, starting and finishing at the root component. Even though it
is simple and lean, it is still powerful enough to support the mechanisms required
throughout this thesis, which are outlined 2.4.

2.4. Component System features
In this chapter, we focus on themain features of the component system (ComponentJS),
which is used throughout this thesis. We will start with the event based component
communication, followed by the property lookup mechanism and end with the com-
ponent life-cycle. Before we can examine the individual communication methods, we
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need to have a look under the hood of the component system itself. As we have al-
ready mentioned in the previous section, the structure underlying the component ar-
chitecture is shaped like a tree. It handles the communication among the components,
whereby events are passed along it to transmit information from component to com-
ponent.
Every method, except the publish and subscribe pair is just a specialization of this

mechanism. In addition to the usual event delivery technique, ComponentJS offers
the possibility of marking events as spreading. This adds a new phase between the
targeting and the bubbling phase, which is called spreading phase. In this phase, the
event is additionally dispatched to all children of the target component.
Equipped with this powerful communication infrastructure, several convenienceme-

thods are provided to simplify the implementation process. Table 2.2 shows a brief
listing of the methods used within this work, see the ComponentJS documentation
[Enga] for an exhaustive list and the full Application Programming Interface (API)
specification.

Method Description

Model Used to create a model accessible through the component system.
Basis for the following two methods.

Value Provides get and set access to a member of a model.
Observe Monitor a model member for changes. A parameter operation can

be set to the values “set”, “get” and “changed” in order to specify
the moment when the method is triggered.

Register Sets up a service endpoint which can be called by name including a
list of parameters. It is then run synchronously and can thus provide
a direct result value.

Call Invokes a service method with given parameters and retrieves its
result.

Socket Prepares a socket for which a plug and unplug method is supplied
and called when one of the two actions occurs, respectively.

Plug Triggers the plug operation of a socket on a target component.
Link Creates an artificial socket that bridges to a real socket on the same

component or even a completely different component.
Publish Releases an event while optionally piggybacking data onto it. The

event follows the different delivery phases already mentioned.
Subscribe Catches an event passing by a particular component. Can be flagged

with spreading in order to also receive spreading events.
Property Provides read and write access to a key-value like storage that is

attached to a component instance.
State Tells the component framework to switch a target component to a

given state.

Table 2.2.: ComponentJS API methods

After these pure communicationmethods, we need to understand how thementioned
propertymethod (2.2) is working. Initially, when called upon a component, an internal
property lookup mechanism is started. The procedure inspects the key-value stores
bound to each component, hereby the order is determined by performing a traversal,
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2.4. Component System features

visible

materialized

prepared

created

visible Component is visible to
the user.
materialized Component is
rendered onto the DOM tree.
prepared Component is pre-
pared and ready for rendering,
i.e. its data is loaded.
created Component is created
and attached to component tree.

Figure 2.5.: Component life-cycle [Engc]

which starts at the target component and passes to the root of the component tree.
It is trying to resolve the property at each component, however the first successful
retrieval aborts the traversal and returns the value.
The last concept we have to highlight before we are able to discuss the communica-

tion among components, is the life-cycle of components [HO07]. This is important due
to the fact that we want to limit some of the above mentioned convenience methods
to certain states, as we will see in Chapter 6. In addition to this, the deliberations in
Chapter 3.4 require us to maintain the current state of the whole system at any time
to do proper run-time verification.
In a common application, according to [Engb] and [HO07] the component states

displayed in Figure 2.5 are sufficient to cover the behavior of a user interface. The
picture on the left illustrates the transitions that are available in each state. As an
example, a component that resides in the materialized state, can either advance its
state to visible or lower its state to prepared. This transition order is invariant to
all components within an application, thus it is not possible for a component to jump
directly from the created to the visible state.
Now, if we consider a strict total order (2.1) over the component states S and the

predicate isParent (2.2) that indicates whether a component C is a parent of another
one. Then, we can set up condition (2.3) which forces all parents to be in no lower state
than their child components. This rule follows the idea that showing nested interface
elements implies that their parent components need to be visible, too.

� ⊆ S × S : visible � materialized � prepared � created (2.1)
isParent : C × C → B (2.2)
∀x, y ∈ components : isParent(x, y)⇒ state(x) ≥ state(y) (2.3)

This behavior it perfect to save a lot of mindless glue code, since it models the nat-
ural flow of a UI. However, it is a common pitfall when debugging applications as the
implicit state changes are generated by an explicit change request that is preceded
by transitions generated to preserve the invariant (2.3). From a developers point of
view, this can be irritating at a first glance. In [Engc] this mechanism is described in
detail.
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3. User Interface Communication
Concepts

3.1. User Interface Communication Ontology

Ontology
The ontology sets all parts participating in the creation process of a user interface in
relation to each other, from an architectural point of view.

Taxonomy
Inside the taxonomy, a definition for all parts included in the user interface commu-
nication ontology is given. This guarantees a standardized way of communication ac-
companied by a common understanding of the precise meaning of each particular
term.

User Interface
Point where the human-machine interaction takes place. The interface enables
the user to conduct his use cases and gives feedback conversely.

Use Case
A task that needs to be performed in order to fulfill a requirement of the user of
the application.

Architecture
The set of concrete components, the relations between them and their attributes
molding an application in its entirety.

Implementation
The code realizing a certain user interface by following the designated architec-
ture.

Architecture Principle
Fundamental truth, rule, tenet or policy an architecture follows.

Reference Architecture
Reusable proven architecture template, based on a set of patterns and following
one or more tactics and strategies.

Pattern
An approved solution for reoccurring problems, whereby the level of details com-
prises a handful of component communications.

11
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Figure 3.1.: User Interface Ontology

Pattern Rationale
A textual description that outlines the reason for choosing and the intent of a
certain pattern.

Communication
The dynamic part of a pattern. It shows the collaboration paths between the
components during run-time.

Structure
A set of components that build up a component tree fragment and their assembly
necessary to accomplish the goal of a pattern.

Pattern Condition
A rule stating when the use of the pattern is indicated and appropriate.
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Code Sample
Exemplary code snippet demonstrating an implementation of a particular pattern.

Trace
Documents the run-time communication between components, consisting of a
source component, issuing an operation with particular parameters on an origin
component.

Constraint
A formal specification partitioning the space of traces into forbidden and permit-
ted ones.

Constraint Rationale
A textual description that outlines the reason for the existence of a constraint.

Constraint Condition
An expression, deciding whether a constraint is applicable or not.

Result
Indicates whether a given trace is permitted or forbidden.

Architecture Maxim
Fundamental, generally valid set of values and rules to guide the application ar-
chitecture discipline.

Temporal Constraint
A formal specification for the behavior of an application during its run-time.

Sequence
The order of traces considered for a temporal constraint.

Communication
Messages, exchanged between the components of the application.

Communication Structure
Assembly of the components participating in a message exchange inside the ap-
plication.

Communication Chronology
Sequence of messages between components in their temporal order.

3.2. Communication Patterns
A communication pattern provides a sophisticated solution for a common problem in-
volving information exchange between several components within a user interface’s
application architecture. It describes the participants of the communication as well as
the chronological order of the transmitted messages, since it may not only consist of
one message but of several. After reviewing and examining various architectures, im-
plementations and common use cases of user interfaces, we found a handful of patterns
describing the recurring communication sequences among components. An example
is the Master-Details use case (7.3) which was the first incident leading us, together
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with several other observations, e.g. in the Login use case (7.1), to the Common Ances-
tor pattern (5.8). Following this constructive technique we came up with the patterns
presented in Chapter 5. The benefits of a pattern collection are obvious. The work
of thinking about a solution has only to be done once. The found solution is proven,
hence the developer can rely on it. And last, a pattern serves as a common commu-
nication term. The usage of patterns within the application development process can
be structured into two phases.

Phase 1
The intelligibility of the user interface domain is improved, as the problem space
can be inspected independent of a particular project. This proactive step is star-
ted, before the first project can make use of the pattern catalog and continues as
long as the pattern catalog evolves and finally settles in its final version.

Phase 2
In this phase, a pattern comes to use to address problems in a particular project.
It provides a distinct, swift and communicable solution including a reference im-
plementation. Of course, it depends on the maturity level of the developer not
to make inflationary use of patterns just for their own sake. That is why a prob-
lem from the functional domain has to be identified and matched with a resolving
pattern, then validated and afterwards implemented.

3.3. Communication Constraints
A communication is represented by a tuple Γ = {(ε, σ, t(σ), θ, t(θ), ω, ρ)}. Component ε
provides the time elapsed since the observation of the application has started. The
variables σ, θ are elements of ς, which is the set of all components in an applica-
tion’s architecture. Function t : x → τ donates the component trait, Chapter 4, τ =
{view,model, controller} for a given component x. Furthermore, ω contains the transmit-
ted operation with ω ∈ {value,publish, subscribe, call, ...} (see 2.4 for an exhaustive list).
And last, variable ρ holds the parameters for operation ω.

Figure 3.2.: Communication categories

The partition diagram in Figure 3.2 represents all tuples Γ exchanged within an ap-
plication. These communications Γ can be partitioned into two categories: permitted,
valid ones on the one hand and prohibited, invalid ones on the other hand. Within
this thesis, we set up constraints Υ that specify the affiliation of each communication
to these two groups. We can treat our tooling, described in Chapter 8 as a function
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c : Υ,Γ → {valid, invalid}, of course the goal for the developer is to minimize the mem-
bers of the invalid partition by aligning the code to the applied constraints. Since we
trace the communication at run-time, the categorization is limited to be carried out
during or after the development process and thus has a pure analytic character. The
constraints that come to use are either derived from patterns as outlined in Chap-
ter 5 or set up to enforce coding guidelines and other features, e.g. FAP, to increase
software quality. Three examples for this can be found in Chapter 6.
In order to enable a natural and intuitive notation for these constraints, we devel-

oped a DSL. Additionally, we distinguish the constraints themselves into peephole and
temporal constraints, the DSL for the two types differ slightly. In the following two
sections, the grammar is displayed using a modified Backus-Naur Form.

Peephole Constraints
As the name already indicates, peephole constraints have only a limited field of view.
They operate on single γ ∈ Γ instances. This reduces their computation effort dramat-
ically at cost of expressiveness. Their presence is still legit, as they are still sufficient
for many scenarios. Peephole constraints follow an implies semantic, meaning that if
the condition of a constraint holds, then the specified result is relevant. The grammar
in Figure 3.3 describes the whole DSL for this type of constraints. One big advantage
of our DSL and the resulting evaluation of the constraints is the compact notation that
allows to specify whole categories of traces at once.
The top level element is a collection of sets of constraints labeled “start”. As we will

see in Chapter 8, this is necessary to be able to have several constraint sets, for exam-
ple a general one and a project specific one that are merged together. One remarkable
subtlety in our grammar is the distinction between expression and expression’. It
is needed to avoid infinite left recursion inside the parser that is generated for our
language.
To specify a constraint, we start out with a unique id and a textual representation of

the rationale. Through positioning information provided by “after” and “before” the
constraint can be sorted in at an arbitrary position within the resulting constraint set.
After that, we set up a condition which each incoming trace is checked against. If the
result of that check is positive, then the specified result is applicable. If there is no
result, then there have to be sub-constraints. These constraints are checked and their
result is yielded.
When constructing a constraint set, the layout of it and the feedback generation for

the developer is one key concern. One of the first ideas was to calculate the percentage
of how much a trace matches a condition and to assume that the constraint with the
most matching percentage should be considered. This idea was abandoned, since the
statements generated by this approach would overexert the application developer and
percentage evaluation of a condition is crucial. Our chosen approach arranges the con-
straints in such a fashion that they are first partitioned in the three basic component
traits, see Chapter 4 for details. In case that no constraint with a condition evaluating
to true is found, then all other constraints with result “PASS” can be considered as
a potential solution and presented to the developer for the given trace. This strategy
suits our needs best, since we derive the constraints directly from patterns. This ap-
proach leads us to constraints describing the permitted communications. Hence an
intuitive way is to suggest these positive constraints in case a communication violates
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start := constraintset?

constraintset := constraint+

constraint := ”peephole−constraint” id ”{” constraintBody ”}”
constraintBody := after? before? rationale condition constraintset{1}
condition := ”condition {” expression ”}”
expression := ”true” | ”false” | term | ”(” expression ”)” expression′ |

”!” expression expression′

expression′ := ”&&” expression expression′ | ”||” expression expression′

term := field operation value | value operation function |
value operation field | field operation field |
function ”(” params ”)” operation value | function ”(” params ”)”

params := field (”, ” field)∗

function := ([̂ ”(”]∗)

value := ”true” | ”false” | ”undefined” | ””” (”\”” | [̂ ”])∗ ””” | ”′” (”\′” | [̂ ′])∗ ”′” |
$([0− 9] + (.[0− 9]+)? | ”/” (”\/” | [̂ /])∗ ”/”

field := id (”.”id)∗

operation := ” == ” | ”! = ” | ” <= ” | ” >= ” | ” < ” | ” > ” | ” =∼ ” | ”! ∼ ”

result := ”FAIL_FINAL” | ”PASS_FINAL” | ”PASS” | ”FAIL”

id := ”last” | ”first” | ([a−zA−Z][a−zA−Z0−9_−]∗)

before := ”before” idseq

after := ”after” idseq

iseq := id (”, ”id)∗

Figure 3.3.: Peephole Grammar

or can not be assigned to any constraint. Of course, negative constraints can still
be formulated and are considered as results for communications. For further details
about peephole constraint evaluation, see Chapter 8.4.

Temporal Constraints
Temporal constraints require a chronological order for the events they bear on. Time-
stamps provide this total order γ1 ≺ε γ2 | γ1, γ2 ∈ Γ for all recorded communications
Γ. The whole theory about temporal constraints is presented in Chapter 3.4. We can
see in the tooling Chapter 8 that timestamp could also be omitted and replaced by
a continuous id, since we program in a sequential manner and thus traces can not
outpace others. However, if this property cannot be guaranteed, than the timestamps
are vital for the analysis process. Furthermore, we also would have to wait until all
traces have arrived and could then start checking our temporal constraints.
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We do not establish any requirements on the order of the constraint within their set,
since the rules are independent of each other and each of them is represented by an
individual monitor, as we will see in the run-time verification Chapter 3.4.
Regarding the DSL dedicated to temporal constraints, some changes had to bemade.

The positioning keywords “before” and “after” are obsolete, since the order does not
matter any more and have hence been removed. Additionally, the productions dis-
played in Figure 3.4 have been introduced to enable the formulation of temporal con-
straints. Last, it is no longer possible to nest constraints, because we have no semantic
equivalent for temporal constraints. In terms of compact notation, the temporal con-
straint DSL is even more specialized than the one of for peephole constraints. Due to
the usage of variables in the sequence section, as well as in the filter and link expres-
sions, it is very flexible and avoids needless repetitions.

sequence := ”sequence {” id (” << ” id)∗ ”}”
filter := ”filter {” expression ”}”
link := ”link {” expression ”}”

Figure 3.4.: Temporal Grammar

When specifying a constraint, we first have to label it with a unique id followed by
a suitable rationale. After that, we specify the participant variables of the constraint,
using the sequence section, e.g. α << β << δ. For each participant, a filter is set
up to partition the space of all communications Γ into buckets, here Ψ = {ψα, ψβ , ψδ}.
During the observation of the application, each communication is sorted into the re-
spective bucket. The special case is when one is assigned to the last bucket in this
sequence ψδ. This triggers the evaluation of the “link” expression, which tries to find
a feasible allocation for the used participant variables. If a solution is found, the mon-
itor continues right away. Otherwise, an error is raised and the constraint fails for the
whole run of the system under scrutiny, since it can never be healed in the aftermath.

3.4. Run-time Verification
Run-time verification is the task of checking whether an application satisfies a given
set of constraints at run-time. This means, it solves the word problem [LC09], which is
to decide a word’s membership in a formal language for candidates with a potentially
infinite length, whereby only a finite prefix is given. Hence run-time verification can
be compared with oracle-based testing, where an oracle specifies the valid runs of
an application, this is done by the formal language in our case. In order to check
a system, we derive a monitor for each constraint, which then observes the stream
of traces. These monitors are usually not deployed in the final version of a system
but during development time. Special case: If the monitors are deployed in the final
product, the verification is testing the system forever.
In the context of this thesis, the goal of run-time verification is to check the validity

of a given sequence of communication traces between different components of an ap-
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plications architecture (3.1). This decision is done according to the constraints (3.1)
that are established in Chapter 5. They are derived from the patterns identified in this
thesis and thus intended to indicate whether the developer followed them or not.
Since the patterns described in Chapter 5 inherently identify the allowed communi-

cation traces for the participating components, it is obvious that the constraints also
specify the allowed behavior of the system. Providing constraints for the prohibited
behavior would result into a huge constraint set, which is simply impractical to be
implemented. Hence we chose the approach to use the positive constraints to suggest
enhancements for deviations in the behavior of the application.

Observation
The run of a system is defined by a possibly infinite sequence (word) of system states.
This sequence is what can be used for further examination. In our particular setting,
the system states are formed by the traces emitted by the application. Since observa-
tion can only be done as long as the developer is interacting with the application and
thus triggering communication, the considered runs are always finite.
For the simple reason that it is often desirable to make a point about the time elapsed

between traces, we froze the time of the occurrences of a communication to an integer
property contained in our traces. As a result of that, constraints that claim hard real-
time boundaries can be established as well.
Creating and destroying components inside the application causes communication

traces to be emitted, too. Hence we can also maintain the current state of the Compo-
nent Tree within our monitoring application. This enables us to visualize the current
state as well as to inquire conditions on the Component Tree in our constraints. We
provide an example for the usage of this component state information in Chapter 6.

Monitors
“A monitor is a device that reads a finite trace and yields a certain verdict.” — [LC09]

Monitors as described in the definition by [LC09] are usually generated from formal-
ized correctness properties. A common formalism is the Linear Temporal Logic (LTL)
first proposed for the formal verification of computer programs by Amir Pnueli in 1977
[A P77].
This logic is suitable for run-time verification because it considers chronological

state sequences. The operators provided by this logic are X, F , G, U and W with the
semantics as defined in Table 3.1. Using these operators, propositions about states
can be specified.

X φ φ holds in the next state
F φ φ holds finally in the future
G φ φ holds globally
φ U ψ φ holds until ψ holds
φ W ψ φ holds until ψ holds unless φ holds globally

Table 3.1.: LTL semantics
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After having defined the operators, we can distinguish finite prefixes of runs into
informative and uninformative. Looking at Statement (3.1) we can say that only runs
with at least a length of four traces are informative, because it specifies that the 4th
state of a run should hold φ. All runs with less than four traces are considered unin-
formative.

XXX(φ) (3.1)
Getting back to monitors, according to [LC09] the following two characteristics have

to be featured by them.

Impartiality
A monitor must not yield a particular verdict, if there is a continuation of a run
leading to a different verdict.

Anticipation
At that point, when any continuation of a run leads to the same verdict, the mon-
itor must return that verdict.

A verdict, in terms of monitors, is the result of an observed run, which is usually a
member of the truth domain, see Definition (3.2).

B = {true, false} (3.2)
G(β → Fα) (3.3)

However, it is also possible that a monitor never yields a verdict for an expression.
The LTL formula, shown in Equation (3.3), is an example for such a situation, as it
takes the infinite character of a run into account, which can never be evaluated in
practice. If we consider Expression (3.3), what should a monitor return in case when
a β occurred and the application was terminated before an αwas detected? In [LC09] a
tweaked version of the LTL, the LTL3 with a three-value semantic adding inconclusive
to create the extended truth domain B′ (3.4) is proposed to address this issue.

B′ = {true, false, inconclusive} (3.4)
After having introduced the inconclusive verdict, LTL3 is suitable to consider finite

prefixes instead of infinite runs. With this in mind we can now have a look at the ques-
tion: Which properties are actually monitorable? If we consider the previous Expres-
sion (3.3) again, we know that the verdict for this correctness property is inconclusive
if an α is pending after the application has terminated. As a result of this observation,
we say that (3.3) is not monitorable. In [LC09] an attempt is made to fix this problem
by introducing two new verdicts presumably true and presumably false but this only
shifts the problem and makes it still not applicable in our scenario. In order to over-
come this gap, we decided to enable the developer and the monitoring tool, Chapter
(8.1), to indicate the termination of a run by publishing a special terminate trace. As
a result, we can also refer to the end of a run within our temporal constraints.
In the course of this thesis, we implement the capability to establish happens before

relations, as a first step towards real-time verification in the user interface domain. An
example is given in Formula (3.5). Here β must not hold before α, which is equivalent
to α happens before β. Of course, we can also concatenate this expression to a chain of
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happens before relations with arbitrary length. Formula (3.6) shows a scenario where
α needs to happen first and then β before γ.

¬β U α (3.5)
¬γ U (¬β U α) (3.6)

Additionally, we provide a DSL that is more intuitive and user friendly to lower the
hurdle for developers that are not yet familiar with LTL. Its grammar is listed in Chap-
ter 3.3.

Application
To implement our constraint based run-time verification module, an architectural pat-
tern called monitor-based run-time reflection or short run-time reflection (RR) was
adapted and extended to meet our needs. Figure 3.5 is an adaption of that pattern
presented in [LC09]. The original pattern consists of the logging, monitoring, diagno-
sis and mitigation component. To suit our scenario, we added the tracing and removed
the mitigation component.

Application  
under  

scrutiny

Diagnosis

Mitigation

Monitoring

Logging

Tracing

M1M1M1

Figure 3.5.: Run-time Verification Scheme

Logging
The logging layer yields system events (traces) in a format supported by the mon-
itoring layer. This sequence of emitted traces form the run of the system. We im-
plemented this layer by hooking into API calls of the communication framework.
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See Section 8.2 of the tooling Chapter 8 for more details. It is obvious that this
technique only allows statements about the run until the current instant of time.
That is why the range for our verdicts is B.

Monitoring
The monitoring layer is built up by multiple monitors M1,M2, ...,Mn that are de-
rived from a number of formal specifications. Each of them produces verdicts
based on the sequence of traces observed from the logging layer. It is desirable
to do this in an incremental fashion, otherwise a verification during run-time is
not feasible.

Diagnosis
To convert the output of the monitoring layer to a statement that can be read by
the developer is the task of the diagnosis layer. It interprets the single verdicts
and combines them with the given set of constraints. The result is then passed
to the tracing user interface.

Mitigation
This layer is meant to reconfigure the system in case a failure occurs. As depicted
in Figure 3.5, it is omitted because we don’t want to interfere in the application
but only observe it.

It is clear that monitors should influence the examined system as little as possible.
That is why we equipped our implementation with online as well as offline monitoring
abilities. To achieve this, we offer “post mortem” analysis, Section 8.4, via the ability
to first direct an entire run to a file, which can then be loaded into the web interface,
Section 8.1, for offline inspection. Even if it should be necessary to analyze the traces
in real-time (online), the web interface can be viewed remotely as well as on the local
machine. At a first glance this ability might seem to be a bit unsatisfactory. But as the
whole analysis process is performed on the client side, the computation load can be
easily outsourced to another machine leaving only the transmission of the traces on
the machine with the system under scrutiny.
Which setting fits best has to be decided in accordance with the impact that is ac-

ceptable in the particular project.
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4. Component Traits and Communication
An SPA is build by composing a large number of components. Each of these com-
ponents plays its designated role and might even be instantiated several times. We
discriminate the different roles into four categories or traits, as the behavior of a com-
ponent is determined by the role it is playing.
Traits are very similar to the ones known from the Scala world [OSV10]. This means

they can be stacked arbitrarily, enabling single components to indwell several traits
at once. Choosing and grouping the right responsibilities for particular components
is a hard task. That is why we give a guideline in Chapter 5, by providing elaborated
and proven patterns for a variety of use cases. When we cut competences and assign
them to components, we try not to mix up different responsibilities by putting them
together into one component. Hence, having components that exhibit more than one
trait might be a sign for a violation of the Logical Separation principle. The technical
implementation of this is outlined in Chapter 8. However, we will already use this
concept for further distinction in the constraints formulated in Chapter 5.
Note: When a component is acting as model and view at once, the properties of each

type are combined.

4.1. View
View components shape the face of an application and are thus responsible for every-
thing that is visible to the user.
But how exactly do the single components blend together to build up the user inter-

face? We can simply imagine stacking components wielding the view trait on top of
each other, starting at the root node, following the hierarchy of the Component Tree.
The result of this traversal depicts the user interface in its entirety.
We denote components of this trait wit the ComponentJS.marker.view mark for fur-

ther reference when setting up constraints.

Condition
The only points, where the component system touches the User Interface Toolkit (UI
Toolkit) are the view components. These components are used to render everything,
from the topmost dialogs of the application, down to layout components that combine
several nested views into one comprehensive view.

Communication
Each view is tied to the underlying model via several bindings. Initialization values,
which are usually not likely to change, are injected via the parameter binding (2.1).
It can either be achieved by passing them into the constructor of the component —
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considering that they are static and will never change— or by observing (see Table 2.2)
designated model properties. An example for a static parameter might be the mode of
a view, determining whether it is editable or not, whereas a dynamic parameter can
be the orientation of the device displaying the application.

Figure 4.1.

The different states of the view, e.g. is a button enabled or not, are managed through
the state binding (see Table 2.1). It is always implemented using model members, that
are then observed, to ensure that the view always reflects the latest state of each user
interface element.
For user interface events, the event binding (2.1) is used. For its implementation,

two possibilities are conceivable. The first is to use the publish API method (2.2) to
start an event bubbling up the Component Tree. The other option is to have desig-
nated model members, which are either observed by an underlying controller and/or
model component. The purpose for this observation is explained in Chapter 4.3 and
4.2, respectively. The second alternative has to be preferred in most cases to stick to
the principle of Factual Locality, considering that it makes the events only visible to
observers.
At last, the view component has to be supplied with up-to-date data accomplished

through the data binding (see Table 2.1), for depiction purpose. The data resides in
the model component, see Chapter 4.2, making it obvious that the view can access it
directly using the value API method (see Table 2.2), as well as watch it utilizing the
observe API method.

Constraints
We set the constraint up as shown in Listing B.1 to assert the behavior explained in
the communication section. At first, we make sure that the calls are performed on the
component itself and that the component wields the view trait. After that, the core
constraint is established. It limits the operations to value (2.2) and observe (2.2)
calls.

4.2. Model
The model trait ComponentJS.marker.model holds all of the application’s data neces-
sary for the user to conduct his use cases. Most of the time, we use the term presenta-
tion model (2.3) due to the fact, that we deal with the user interface, which basically
presents data to the user and lets him interact with it. We assign the contained data
to four different categories:

• Domain specific application data

• UI state data
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4.2. Model

• UI parameter data

• Specialized event data

In order to improve intelligibility and to simplify debugging of an application, we
define a specific naming convention. Hereby the data from the above categories is
represented as outlined in the following micro grammar.

type := ”data” | ”state” | ”param” | ”event” | ”cmd”

identifier := [a−zA−Z][a−zA−Z0−9_−]∗

name := type ” : ” identifier

The name rule produces valid model labels and, when strictly followed, an application
must not contain any model component that has differently termed members.
The prefixes “data”, “state” and “param” map one to one to the data categories.

Both, “event” and “cmd” belong to the category of event data with the distinction that
events are sent from overlying components towards the model, whereas commands
arise from underlying components.

Condition

We have several possibilities to store data within an application: Use globally or locally
scoped variables, member variables of component instances or outsource it to another
storage layer. But when we want to make the data available within the Component
Tree, whichmeans that we can observe andmanipulate it through component system’s
API, we have to declare a model (see Table 2.2) and pull the required data into it.
In general, the model trait should be used whenever a component holds any kind of

data, listed in the introduction of this chapter.

Communication

Figure 4.2.

First of all, the component has to perform the model definition by calling the model
API method (2.2) onto itself. Afterwards, the model can observe its values to enforce
its presentation logic (2.3) triggered by data/state changes or event occurrences. The
presentation logic might cause changes for model values according to the dependen-
cies between model members. This makes it vital for the component to do value API
method (2.2) calls.
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Constraints
As already seen in the constraint for the view trait (4.1), we enforce the naming con-
vention in the constraint (B.2) for the model trait, as well. In addition, as inherent
in the character of a model component, we of course have to permit model calls (2.2)
onto the component itself.

4.3. Controller
A component with the trait ComponentJS.marker.controller is in most cases both
interface to the rest of the Component Tree and coordinator for its sub-tree (2.3).
We can distinguish two perspectives when the controller acts in the interfacing role.

In the one way, an underlying component sees the controller, whereas the sub-tree
remains hidden behind it. This makes the controller act like a facade for the concealed
components, from an ancestors point of view. Alternatively, from the child component’s
perspective, the controller is the gateway to the rest of the application. It can deliver
information as well as expose sub-tree events to the underlying components.
In the coordinator role for its sub-tree, a controller can perform common ancestor

communication to transmit data from one sibling component to another. This mecha-
nism is described in detail in the pattern catalog in Chapter 5.8.

Condition
It is often advisable to hide a whole sub-tree from the remaining application when
developing reusable or complex component formations. In these situations, the con-
troller trait is the first choice. Of course, this is only possible, if the internal structure
of such a component composition is not of particular interest for the instantiating com-
ponents.
As already mentioned in the beginning, the controller is the interface for its sub-tree.

This means that every communication from or into the sub-tree has to pass through
the controller. Either via inherent hierarchy of the Component Tree or via methods
directed to the controller. With that in mind, we can see the controller as an interface
definition equally regulating the data going in and out of the sub-tree.

Communication
What the view trait, was for the visual representation and user interaction side, is the
controller trait for the data representation and component interaction. One signifi-
cant difference we already noticed when comparing Figure 4.3 to the figures of the
other traits is the second component wielding the model trait. As we will see in the
remainder of this section, the controller maintains a direct dependency on its child
model component, rendering it nearly useless when used without.
First we want to have a closer look on the model-controller relation, as a base for

further investigation of the tasks a controller has to carry out. We start with a question:
Which data is exchanged between model and controller? Each controller has to deal
with the four data categories as defined in the model trait. As we know, the general
mechanism to read from and write data to model members is the value API method.
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4.3. Controller

Hence these calls have to be performed by the controller upon the model component,
in order to meet its presentation provisioning (2.3) duties.

Figure 4.3.

These duties might also involve performing calls to the service facade to retrieve
data, necessary for the other components within the sub-tree. In addition to the read-
ing and writing of data, the controller also has to observe model properties to trigger
its presentation actioning (2.3). The actioning can either be internal, meaning that
one component raises an event and the controller delegates it to another sibling com-
ponent or it can be an outgoing event that triggers an event to be published on the
Component Tree. We notice, that it is also possible that a child component publishes
an event instead of using model members. This happens when the particular compo-
nent is not aware of the direct model the controller is observing. The last possible
communication for a controller is that an overlying component wants to delegate or
query it or its sub-tree, which is for example used in the Managing Widget pattern,
see 5.5. That is why the controller might also call the register API method (see Table
2.2), targeting itself.

Constraints
Appendix B.3 shows the resulting constraints for the controller trait. All calls onto the
controller itself, as described in the communication section, are permitted. Unfortu-
nately, we can formulate the condition for the observe (2.2) and value (2.2) calls only
to any model component that is a child of the controller component. Here, a more
accurate term would be desirable for the future, see 9.2.
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5. Communication Patterns &
Constraints

The pattern catalog contains a brief explanation of each pattern, based on the pattern
scheme of [Gam95]. We also link the patterns with their corresponding constraints,
when new constraints are introduced by a particular pattern. For the “known uses”
sections, we resort on existing applications, whose details can be found in the corre-
sponding glossary entries.
The UI Toolkit Code Samples are HTML templates, that are parsed and populated

using jQuery Markup, a plug-in for jQuery. Of course any other UI Toolkit could be
substituted.
In this chapter, dashed elements stand for components provided by the environment

of the particular pattern. The color of each component is aligned to the color schema
in Chapter 4, along with the color used inside the component tree of the monitoring
tool, Chapter 8. Arrows with filled heads are API calls whereas empty heads identify
the components created by others. This notation is necessary, since the create API
calls are always done on the creating component itself and would thus not provide any
useful information.
In addition to the component types known from Chapter 4, a new dark grey colored

stand-in type is introduced. Currently, these doubles can be replaced by only one
other component of any type. In the future, with the concept of a shadow tree, which
is an adaption of the eponymous paradigm proposed by the W3C in [W3C13], these
surrogate components can be replaced with a whole sub-tree consisting of several
components hidden inside one shadow component. This compromise guarantees that
the patterns can also be applied after the introduction of a shadow tree in the near
future.

5.1. Pattern 1: Lean Widget

In order to build a user interface (3.1), two domains have to be incorporated: The
graphical and the component world. The graphical world is responsible for drawing
the widgets, the component world, instead, handles the communication among them
and their data objects.

Condition

This pattern is only indicated if the widget is simple. In this particular case, simple
means that the amount of states and data that is required for the correct rendering of
the widget consists only of a maximum of two elements.
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Structure

Figure 5.1.

The structure of this pattern consists of only one view component. Its collaborators
are on the one hand the UI Toolkit, which is used to create a graphical representation,
and on the other hand the model component, that is required by the view component to
store its state, data and to trigger its events. Figure 5.1 outlines that model component
and UI Toolkit are not part of the pattern itself and hence have to be provided by the
components environment.

Communication
Communication paths for this component can be categorized into two sections: The
data binding, see 2.1, and the event binding, see 2.1, domain. To achieve a bidirec-
tional data binding, first, the observer pattern is applied to keep the displayed data in
sync with the underlying model. Furthermore, the valuemechanism is used to update
the model with the latest data from the widget. The crucial part is to determine the
data field of the underlying model, as the view needs to know where to store its data
and which field of the model has to be observed. The same problem occurs for the
event binding. To address this problem, a scoped property lookup (see Table 2.4) for
the names of the fields is performed in order to enable value and event passing to-
wards the model. Scoped, in this case, means that there is a dedicated version of the
property, only visible for the particular instance of the view component. This property
has to be provided by an underlying model, which is not part of this pattern.

Rationale
The pattern provides a connection between the UI Toolkit domain and the component
system. It focuses on Loose Coupling between the view and the underlying structure to
enable Headless Testing while simultaneously providing an abstraction of the deployed
UI Toolkit for easy exchangeability.
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5.1. Pattern 1: Lean Widget

Constraints
Allowed API methods for this pattern are property (2.2), value (2.2), observe (2.2)
and plug (2.2). Hereby, the origin of these operations has to be the view component
itself. See appendix B.4 for the corresponding DSL implementation.

Pros and Cons
Advantages

• The view component is highly reusable and can be instantiated several times
across the application. This reduces the overall lines of code and improves
maintainability.

• Reduces complexity of the Component Tree by replacing a full blown MVC
triad with only one component, following the principle of Overall Simplicity.

• Less boilerplate code is necessary, as too simple components are omitted and
do not need to be implemented.

• Enables Headless Testing by Loose Coupling of the view component with the
underlying environment.

Disadvantage

• Although the number of components is reduced by this pattern, the granular-
ity can still be too fine and condensing small widgets to a bigger component
should be considered.

• The pattern tends to violate the principle of Factual Locality when the wid-
get comprises of many states and pieces of data, since the data is stored
somewhere outside the view component.

Alternatives
When it comes to widgets that are more intricate, i.e. they have to maintain several
states and need not only one piece of data for the purpose of displaying their content,
the Complex Widget (5.4) is the pattern of choice.

Code Sample

1 app.ui.lean_text_box = cs.clazz({
2 mixin: [ cs.marker.view ],
3 dynamics: {
4 label: null
5 },
6 cons: function (label) {
7 this.label = label
8 },
9 protos: {
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10 render: function () {
11 var txt = $.markup(’text-box’, {
12 label: this.label
13 })
14 $(’input[type=text]’, txt).blur(function () {
15 var eventField = cs(this).property(’blur’)
16 cs(this).value(eventField, true)
17 })
18 $(’input[type=text]’, txt).change(function (event) {
19 var dataField = cs(this).property(’data’)
20 cs(this).value(dataField, event.target.value)
21 })
22 cs(this).observe({
23 name: cs(this).property(’data’), spool: ’created’,
24 func: function (ev, nVal) {
25 $(’input[type=text]’, txt).val(nVal)
26 }
27 })
28 cs(this).plug({
29 object: txt,
30 spool: ’created’
31 })
32 }
33 }
34 })

Listing 5.1: Basic text box widget

As a view is supposed to deal with the creation of user interface elements, the code
displayed in Listing 5.1 handles the instantiation of the template HTML code in 11 and
embeds it into the surrounding container via the socket (2.2) mechanism in line 28.
The template (5.2) is populated with the member variables of the view component, that
have been passed to its constructor. The used CSS classes are globally supplied and
can be exchanged easily. For the communication of the view with its environment two
kinds of bindings are necessary: The event binding, which is done in line 15 and the
bidirectional data binding, that is linked up in line 19 and line 22 to 27, respectively.

1 <markup id="text-box">
2 <li class="text-box item">
3 {{label}} <input class="text-box" type="text"/>
4 </li>
5 </markup>

Listing 5.2: Basic text box HTML template

Known Uses
ComponentJS Tracing

The button and text box widgets inside the toolbar of each tab follow this pattern.
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5.2. Pattern 2: Shared Model Component

Architecture Fundamentals
Depending on the complexity of each entry within the menu of this application,
each could have been implemented using the LeanWidget pattern in combination
with a shared model (5.2), providing the necessary data.

5.2. Pattern 2: Shared Model Component
Sometimes it is just exaggerated to have a model for a range of view components. In
these cases a shared model component that contains the union of each single view’s
required data elements is a good solution.

Condition
When faced with a quite huge number of model-view dyads, with each model contain-
ing only a few members, it might be worth considering to collapse the models into one
single comprehensive model. Another indicator are dependencies among the differ-
ent models, where a common model leads to less unnecessary communication and a
better manageable presentation logic. Separating these data into a shared model re-
duces communication overhead and improves the architecture principle of Exclusive
Sovereignty, hence makes the application less vulnerable to inconsistencies.

Structure

Figure 5.2.

As displayed in Figure 5.2, the pattern consists of one model component. We have
two different peculiarities for this pattern. In one case, the different view components
are aware of the names of the model members they want to access and can do this
directly. In the other case, the views require a particular set of underlying model
members and locate the ones designated for them using the property lookup (2.4)
mechanism like explained in the Lean Widget pattern (5.1). Using the property lookup
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mechanism improves reusability. It is also an Inversion of Control (IoC) whereby the
decision about the storage location of data is made by the model itself.

Communication
Each model member for the event binding (2.1), data binding (2.1) and parameter
values (2.1) is stored in the model component. In both variations of this pattern, the
values are accessed using the value (2.2) mechanism. An additional communication
between views and model arises in the more generic case, it is used to look the address
for the values up. This approach guaranteesmore reusability for the views but requires
the model to maintain scoped properties (2.4) for all accessing components.

Rationale
Via providing a way to map data slots of a model seamlessly to the storage required
by overlying components, this pattern offers the possibility to merge a bunch of tiny
models into one model component. This reduces the implementation effort, the run-
time overhead and the complexity of the application.

Constraints
Like outlined in appendix B.5, the model component has to be able to define the model
for the data onto itself. Moreover, it has to provide scoped properties (2.2) to direct
relying view components to the correct model members. This is essential, especially
when the names of the model members required by the different views are ambiguous
either by coincidence or because of the same view being instantiated multiple times.

Pros and Cons
Advantages

• Simplify several dedicated model components into one comprehensive com-
ponent to reduce complexity, improving Overall Simplicity.

• Guarantees Exclusive Sovereignty over a set of coherent data and reduces
redundancy.

• Supports views with a generic data interface and thus increases Construc-
tional Reusability.

Disadvantage

• The pattern tends to become an anti-pattern. When pushed to the utmost,
the model drifts towards the component tree’s root, absorbing all models it
passes through. This would result in one big omnipotent model, which breaks
architecture principles like Factual Locality and Exclusive Sovereignty.
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5.2. Pattern 2: Shared Model Component

Alternatives

Due to the close relation to the Lean Widget pattern (5.1), the alternative for this
pattern is the same. A complex widget (5.4) is advised, when the number of model
members is too big and should thus be separated logically into different components.

Code Sample

1 app.ui.shared_model = cs.clazz({
2 mixin: [ cs.marker.model ],
3 protos: {
4 create: function () {
5 cs(this).model({
6 ’data:items’: { value: [], valid: ’[{ label?: string,’ +
7 ’id: string, data?:string, blur?:string }*]’}
8 })
9
10 cs(this).observe({
11 name: ’data:items’, spool: ’created’,
12 func: function (ev, items) {
13 _.each(items, function (item) {
14 if (item.data)
15 cs(this).property({
16 name: ’data’, scope: ’view/’ + item.id, value: item.data
17 })
18 if (item.blur)
19 cs(this).property({
20 name: ’blur’, scope: ’view/’ + item.id, value: item.blur
21 })
22 })
23 }
24 })
25 }
26 }
27 })

Listing 5.3: Shared model for several basic text boxes 5.1

The shared model component provides a model member to store a set of configura-
tions for its views, see line 5 in Listing 5.3. According to this configuration, scoped
properties are provided in line 12 for each if them. Now comes a semantic variation
point. The model members, identified by the names contained in the scoped proper-
ties do not necessarily have to reside in the shared model. They can also be provided
from an underlying model as it is done in this code sample. In this case, the model is
rather a router, than a dedicated model. Of course, it still has to hold the configuration
information for each element, itself.
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Known Uses

ComponentJS Tracing
The toolbar component provides a comprehensive model for all embedded con-
trols.

cloudTeX
Header component and sharing component both access one common model to
determine the current user.

5.3. Pattern 3: Sub-tree Information Delivery
Inherent with the hierarchical character of a Component Tree is the possibility to split
it into individual sub-trees (2.3). This and the fact that data is often shared among
these sub-trees, leads us to the Sub-tree Information Delivery pattern.
A quick example: Imagine an application that has two visual components, a se-

lectable list of employees and a view to display the details of the selected employee. Of
course, according to hierarchical decomposition (2.1), these two views have a common
part in the Component Tree and one that is unique for each of them. That fork compo-
nent, dividing the Component Tree into the common and the unique part is the point
where the mediation between the list and the details view has to be located. What
possibilities we have at hand and when to prefer which is the goal of this pattern.

Condition

The example in the introduction already highlights the problem that makes this pattern
indispensable: Delivering data that is of interest for one or more sub-trees (2.3), outgo-
ing from one (common) parent component. Two application scenarios are conceivable
for this pattern. In the first one, a component P holds the Exclusive Sovereignty over
a set of data. This data should be available for a variable amount of sub-trees. The
second scenario contains the same component P that has at least two sub-trees, with
one of them providing information to P that is afterwards transmitted to the other child
components in a broadcast fashion. We notice, the information has to be distributed to
the sub-trees of component P, in both cases. Hence, this need can be used as a clear
indicator for the Sub-tree Information Delivery pattern.

Structure

The structure outlined in Figure 5.3 already implies the two variations of this pattern.
One way is to use a component wielding the controller trait (4.3), whereas the other
way is to use a model component (4.2). Furthermore, the illustrated component con-
stellation is independent from the amount of components on the path between the
controller respectively model to the root component of the sub-tree. This autonomy
improves the architecture in terms of Loose Coupling since the only constraint to the
participating trees is them being real sub-trees of the data providing component.
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Figure 5.3.

Communication
At first we need to have a look at the relation between events and data. On the one
hand, we can piggyback data on an event (2.2). On the other hand, we can use boolean
model members to represent events by toggling their value. Hence we can say that
events and data, i.e. model members, are equally powerful, whereby the data based
approach has the downside that it needs a model (2.2) to provide event members. With
this in mind, we can proceed to describe and distinguish the two variants.
First, we take a look at the option on the left side of Figure 5.3. Every sub-tree,

interested in the particular event subscribes to it in spreading mode (2.4). The event
is then fired by the controller upon occurring changes. The procedure in detail: An
event is dropped at the controller component, which is then traveling towards the root
of the Component Tree and triggering any observers it passes by.
The second option, shown on the right hand side of Figure 5.3, also implements the

observer pattern (2.3), but now we use the event binding (2.1) approach. Here, the
interested sub-trees can observe and modify the model members they are supplied
with. To tweak this association we can use the property mechanism to lookup (see
Table 2.4) the model members’ addresses like already introduced in the Lean Widget
pattern (5.1).
The main differences between the both approaches is the location where the obser-

vation is taking place as well as the usage of an intermediate component — the model
— in the one case, whereas the other case copes without this extra component. At a
first glance, the second variant seems to lose in a direct comparison. Thus we have to
take a closer look on the disadvantages and advantages of each approach.

Spreading event

Advantages

• Guarantees that the sub-trees cannot modify the data, since they have no
write access ensuring Exclusive Sovereignty.

• It is very good for communication triggered by an event outside the com-
ponent system.

• Fulfills the User Interface Component Architecture.
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Disadvantages

• Data is stored at several locations within the Component Tree, leading to
redundancy that in turn can cause update anomalies.
• A spreading event travels through the whole sub-tree, causing additional
communication overhead.
• Components that are created after an event occurred may be notified too
late.

Model member

Advantages

• Each component can pull the required data right when it needs it.
• The data is redundancy free through Exclusive Sovereignty, in combina-
tion with Factual Locality.
• Globally scoped data can be easily accessed and observed, i.e. current
logged in user, authorization information etc.

Disadvantages

• Disbands Loose Coupling and Strong Cohesion by introducing cross com-
ponent dependencies.
• Breaks the User Interface Component Architecture by externalizing parts
of the presentation.
• Difficult to understand due to long range dependencies.
• Unimpeded write access may break Exclusive Sovereignty.

With this assessment and the two implementation strategies at hand, we can now
postulate recommendations. Spreading events should be used when the transferred
information really is an event or data where only changes are of interest. For exam-
ple, a window resize or orientation change (for mobile devices) event that has to be
delivered to multiple components within the Component Tree.
However, the model member approach has to be preferred when the distributed

information is data and read as well as write operations are conceivable. The model
component, of course, can take care of validation and data logic by observing the
different data operations (2.2).
The pattern supplies us with a universal mechanism of delivering data to child com-

ponents but does not claim to define where the events or data originate any closer. We
will sketch a possible application in the code sample, Listing 5.4.

Rationale
The Component Tree allows us to have communication bubbling up from each compo-
nent. On its way, an event can notify observers and trigger actions as well as deliver
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data. But sometimes, we are faced with the necessity of sending data from one compo-
nent downwards the hierarchy to child components or whole sub-trees. At this point,
this pattern steps in by providing a clean and sophisticated way to relay information.

Constraints
The corresponding constraints are outlined in Listing B.6. In both scenarios we deter-
mine the receiver to wield the controller trait (4.3), as the controller is the interface of
model and view towards the remaining Component Tree. We can see that the events
have to be published and observed in spreading mode to enable the correct communi-
cation direction. The remaining communication is similar to the one of the RichWidget
pattern, see Chapter 5.4.

Pros and Cons
Advantages

• Abstracts from the event, which triggers the information exchange.
• Is a specialized solution for two separate information categories.
• Maximizes Factual Locality and Exclusive Sovereignty as far as practicable.

Disadvantage

• Debugging the components involved in this pattern can be quite challeng-
ing, since the dependencies can stretch over the whole Component Tree and
hence might be hard to detect.

• Destroys Strong Cohesion by pulling apart what belongs together. But in
some cases this can be the only practical solution.

Both disadvantages can be mitigated with a good component interface documenta-
tion.

Alternatives
An alternative might be the Common Ancestor Communication pattern, see 5.8. It
establishes the connection between two components located in different sub-trees.
Besides that, another option could be the Shared Model Component pattern, see 5.2.
But it can only be used in a limited extent, since a whole component and not only an
individual model member is shared among components.

Code Sample

1 app.ui.receiver = cs.clazz({
2 protos: {
3 show: function () {
4 cs(this).subscribe({
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5 name: ’event:window-resized’, spool: ’visible’,
6 capturing: false, bubbling: false,
7 spreading: true,
8 func: function () {
9 this.refreshView()
10 }
11 })
12 }
13 }
14 })
15
16 app.ui.relay = cs.clazz({
17 dynamics: {
18 timer: null
19 },
20 protos: {
21 show: function () {
22 window.onresize = function () {
23 if (this.timer !== null)
24 clearTimeout(this.timer)
25 this.timer = setTimeout(function () {
26 cs(this).publish({
27 name: ’event:window-resized’,
28 capturing: false, bubbling: false,
29 spreading: true
30 })
31 }, 1000)
32 }
33 }
34 }
35 })

Listing 5.4: A window resize event propagated to sub-trees

Listing 5.4 shows the example of the spreading event approach that is used to prop-
agate window resize events to interested components after a threshold of one second.
The important part is in line 7 and 29. Here the event mechanism is switched to
spreading mode and thus enables a communication downwards the hierarchy. The ob-
server pattern is implemented as usual through publish and subscribe in line 26 and
4, respectively.

Known Uses
Midas

Whenever a store is selected in the designated list view, it is saved to a shared
model property as many other parts of the application display information related
to it.

40



5.4. Pattern 4: Rich Widget

cloudTeX
The currently logged in user is stored in a shared model member to make it avail-
able for several equal sub-trees.

MagicSearchTool
The registration form is subdivided into several components that host input fields.
To clear all of these input fields, a spreading event is published on the root com-
ponent of the form.

5.4. Pattern 4: Rich Widget
Inmany cases it is desirable to provide a dedicatedmodel for a single widget in order to
encapsulate the complexity of the presentation logic (see 2.3). Furthermore, a central
element that holds the Exclusive Sovereignty over its data can be useful, too. This is,
where the Rich Widget pattern kicks in.

Condition
It is appropriate to choose the Rich Widget pattern, if the presentation of a particular
widget comprises a significant amount of states and data. Furthermore, extensive
presentation logic suggests the use of this pattern for a better logical separation.

Structure

Figure 5.4.

The structural layout of this pattern is an enhanced version of the Lean Widget (5.1).
The UI Toolkit is also used to create the graphical representation, here. But with the
inherent complexity of the widget, leading to a significant amount of stored data and
states, a dedicated model component is the solution of choice. Figure 5.4 shows the
composition, where the model has to be implemented as a part of the whole pattern.
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Communication
Due to the similarity with the Lean Widget (5.1) pattern, the transmission channels
for the view component to ensure the bidirectional data (2.1) and the event binding
(2.1) stay the same. Moreover, the resolution of the model field names using scoped
properties is no longer necessary, because view and model component are aware of
each other. The required fields of the view can be interpreted as an interface that is
presumed by the view component. So the view component can be reused if a model
component implements this interface, i.e. it provides the necessary fields.
The model component, however, requires new communication paths to perform its

presentation logic (2.3). The observer pattern (2.3) is deployed to trigger the presen-
tation logic and necessary values of the model members can be retrieved using the
value (2.2) method. Since the presentation logic is only allowed to access the data
stored in its hosting model, these methods are only allowed onto the model compo-
nent itself. Any operation involving data of components outside this pattern has to be
carried out by the controller like described in the pattern in Chapter 5.8.

Rationale
Keeping all data and its logic together in one place reduces complexity and improves
maintainability and understandability of the source code. Thus, the implementation
of a dedicated model component for a rather extensive widget is advised. Of course
Headless Testing is well supported since the view can be omitted and testing is per-
formed on the sole model component.

Constraints
The pattern allows the same API calls for the view component like the Lean View
pattern (5.1) does. Additionally, constraints for the model component have to be de-
ployed. The model is permitted to observe (2.2) itself to perform presentation logic,
as well as modifying its content via the value (2.2) method. See appendix B.7 for the
corresponding DSL implementation.

Pros and Cons
Advantages

• Gives a clean separation of model and view component.
• Provides an abstraction for the view component: interaction is done via the
presentation model.
• Clusters methods and data logically, which improves maintainability and also
ensures a good Logical Separation and Exclusive Sovereignty.

Disadvantages

• Needs additional code, as there are two classes to implement.
• The model always has to be bundled with the view, hence is less reusable.
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Alternatives
It is worth considering the Lean Widget pattern as an alternative, when the model
seems to be an over-engineered solution. An indicator is a model consisting only of
presentation fields.
The pattern does not limit the number of widgets that are actually implemented in

the view. Thus, a slight variant leads to group several optically separated widgets into
one single view component with a grouped model.

Code Sample

1 app.ui.basic_text_box = cs.clazz({
2 mixin: [ cs.marker.view ],
3 protos: {
4 render: function () {
5 var txt = $.markup(’text-box’)
6 $(’input[type=text]’, txt).keyup(function (event) {
7 cs(this).value(’event:keyup’, event.keyCode)
8 })
9 $(’input[type=text]’, txt).change(function (event) {
10 cs(this).value(’data:filter’, event.target.value)
11 })
12 cs(this).observe({
13 name: ’data:filter’, spool: ’created’,
14 func: function (ev, nVal) {
15 $(’input[type=text]’, txt).val(nVal)
16 }
17 })
18 cs(this).plug({
19 object: txt,
20 spool: ’created’
21 })
22 }
23 }
24 })

Listing 5.5: Complex widget View component

The view component in Listing 5.5 creates and embeds the graphical representation
the same way it is performed in the Lean Widget pattern (5.1). The actual difference
lies in the fashion event and data binding is implemented. The calls in lines 7, 10 and
12 no longer use the dynamic resolution technique as they are directly wired to the
model members.

1 app.ui.basic_text_model = cs.clazz({
2 mixin: [ cs.marker.model ],
3 protos: {
4 create: function () {
5 cs(this).model({
6 ’event:keyup’: { value: -1, autoreset: true },

43



5. Communication Patterns & Constraints

7 ’data:filter’: { value: ’’ }
8 })
9 cs(this).observe({
10 name: ’event:keyup’, spool: ’created’,
11 func: function (ev, nVal) {
12 if (nVal === 27 /* ESCAPE */)
13 cs(this).value(’data:filter’, ’’)
14 }
15 })
16 }
17 }
18 })

Listing 5.6: Complex widget Model component

Listing 5.6 shows the implementation of the model component. It defines the model
itself in line 5 with the necessary members “event:keyup” and “data:filter”. Addition-
ally, it starts to observe the “event:keyup” member in line 9 and performs the presen-
tation logic when triggered by the observer (line 12). In this case, when the Escape
key was hit the value of “data:filter” is set to an empty string - the filter is cleared.
This is only a minimal running example and should not be considered as a sterling

example. Usually, the view is more complex and thus the model may consist of five or
more members.

Known Uses
ComponentJS Tracing

The grid component comprises many states and needs extensive data to display
its content.

Midas
The chart visualization is also one big widget, since it is too complex and too
specific to break it into smaller components.

5.5. Pattern 5: Managing Widget
Widgets that are responsible for the layout of an application often have inherent logic
to decide how the different components are arranged. Furthermore, the requirements
for the layout dictate that some components can only be displayed mutual exclusively.

Condition
This pattern perfectly fits the needs of an intelligent layout widget. Is the arrang-
ing of containing components computed using several state values or are constraints
tightened to the states of the managed components, this pattern is recommended. A
contraindication for this pattern is the presence of only one managed component, then
additional nesting inside a layout component just increases complexity.
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Structure

Figure 5.5.

Figure 5.5 shows the structure of this pattern. It consists of the classic MVC Triad
(2.3) and the dashed component at the top end suggesting the potentially managed
components. As the arrow at the bottom implies, this widget has to be called from an
underlying component that is aware of the single components included in the layout.

Communication
We use delegation via the create child component service to shift the responsibility
to manage the components from a composing component to the layout widget. After
the creation request was issued, the controller instantiates the supplied component
class and initializes it with the information given in the request. It also has to disable
the auto-increase mechanism in order to control the component’s state independently.
After this setup procedure has finished, the state of all managed components is con-
trolled by the widget’s controller according to actioning triggered by user events or
external state changes. Each newly created component has to plug itself into the un-
derlying view, with one constraint: It must only perform plug operations, when it is in
the materialized state, since the view prepares the sockets in that state, see line 48
in Listing 5.7.

Rationale
Imagine a layout component L and an underlying component U. U plans to embed
several components inside the layout provided by L. One way would be to issue create
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calls directly from U upon L to instantiate the necessary components. If presentation
logic (2.3) is necessary for the layout, e.g. a tab layout, where only one tab can be
visible at a time, then component U has to take care of the states of each created
component, although it does not know how the layout is build up. Hence the best
practice is to shift that responsibility to component L which creates child components
and is able to manage them, as a result.

Constraints
The constraints resulting of this pattern are written down in appendix B.8. As the
behavior of the model and view component does not deviate from the one implied
by their respective trait, no additional constraints have to be set up for them. The
constraints for the controller can be condensed to one single condition. It ensures
that the required calls call, state and create are only performed on components
that are three steps away from it.

Pros and Cons
Advantages

• High Constructional Reusability for pattern instances.
• Precise Logical Separation along with Structural Modularity.
• Support of synchronization between the Component Tree and the DOM tree,
due to direct state management of embedded components.

Disadvantage

• Additional components may be introduced although the encapsulated logic
is not that complex.

• An underlying component is always needed, even if the widget is only instan-
tiated once.

Alternatives
Should the layout widget not need any logic at all, because it provides a static layout,
the Non-Managing Widget (5.6) is a better choice. Another alternative is the Rich
Widget pattern (5.4). It should be used, when no generic layout is present.

Code Sample

1 app.ui.managing.widget.controller = cs.clazz({
2 protos: {
3 create: function () {
4 cs(this).register({
5 name :’createManaged’, spool: ’created’,
6 func: function (clazz, cfg) {
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7 var newCmp = cs(this, ’model/view’).create(cfg.name, clazz)
8 newCmp.call(’init’, cfg)
9 newCmp.property(’ComponentJS:state-auto-increase’, false)
10 cs(this, ’model’).value(’state:managed-cmps’).push(cfg.name)
11 }
12 })
13 },
14 show: function () {
15 cs(this).observe({
16 name: ’event:next’, spool: ’created’,
17 func: function () {
18 var all = cs(this).value(’state:managed-cmps’)
19 var cur = cs(this).value(’state:current-cmp’)
20 var newCur = cur + 1 % all
21 cs(this, ’model/view’ + all[cur]).state(’materialized’)
22 cs(this, ’model/view’ + all[newCur]).state(’visible’)
23 cs(this).value(’state:current-cmp’, newCur)
24 }
25 })
26 }
27 }
28 })
29
30 app.ui.managing.widget.model = cs.clazz({
31 protos: {
32 create: function () {
33 cs(this).model({
34 ’state:managed-cmps’: { value: [], valid:’[object*]’ },
35 ’state:current-cmp’ : { value: 0, valid:’number’ },
36 ’event:next’ : { value: ’false’, valid:’boolean’,
37 autoreset: true }
38 })
39 }
40 }
41 })
42
43 app.ui.managing.widget.view = cs.clazz({
44 protos: {
45 render: function () {
46 this.ui = $.markup(’pager’)
47
48 cs(this).socket({
49 ctx: $(’#content’, this.ui),
50 spool: ’created’
51 })
52 },
53 show: function () {
54 cs(this).plug({ object: this.ui, spool: ’visible’ })
55 }
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56 }
57 })

Listing 5.7: Managing Widget

On creation of the widget, the delegation service is registered in line 5, the model
defines members for the managed components and the event binding and the view
creates a socket in 48 for the managed components. After the setup, the actioning
starting in line 15 deals with the layout logic and handles themanaged components like
displayed in line 21. The code responsible for triggering the “event:next” is omitted
for sake of simplicity. A nice addition would be to set store to true for “state:current-
cmp” for a smoother user experience.

Known Uses
ComponentJS Tracing

Tab container widget of the whole application, as well as the tab container widget
inside the peephole constraints tab.

P1
Page container widget in the mobile perspective supporting a header, footer and
multiple pages.

5.6. Pattern 6: Non-Managing Widget
A non-managing widget is the opposite of pattern (5.5). It contains no logic and does
not interact with its child components at all. In its simplest form, it groups different
components to one layout, by providing the necessary sockets.

Condition
Embedding multiple widgets into one static layout can be performed in several ways.
The approach of choice depends on the amount of presentation logic (2.3) inherent to
the layout. When dealing with no logic at all, i.e. only the visual structure, a dedicated
view component that serves as an additional layer between the actual model-controller
dyad and the particular widgets serves best.

Structure
As shown in Figure 5.6 the central element is of the stand-in type already mentioned
in the introduction of this chapter. It can thus either be a single view component or
a collection of components, collapsed to one node, representing a shadow tree (5).
All components are instantiated by the underlying controller component and hence
known by name. The view component, responsible for the static layout, does not know
anything about the structure surrounding it. This stands in contrast to the Managing
Widget pattern (5.5), where the view knows its direct child components.
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Figure 5.6.

Communication
The view component or shadow component has to provide sockets for all participating
widgets and hence has to call the socketmethod (2.2) several times upon itself. After-
wards, the sockets are ready to be linked to the particular child components. This is
optional and only necessary, if the child components should be plugged into dedicated
sockets. Furthermore, the child components have to be synchronized with the view,
concerning the state when they plug themselves into the view. This is usually after the
view is in the materialized state. To make a child component, the controller creates
it first, initializes it using a call and manages its state from then on.
Due to the fact that the creation and state control is performed by another com-

ponent outside of the scope of this pattern, it is labeled the Non-managing Widget
pattern.

Rationale
It is not always necessary to have a full blown MVC triad (2.3) taking care of a simple
layout job. To reduce complexity, the model and controller components are omitted,
boiling the MVC triad down to a single view component.

Constraints
Like we can see in Listing B.9, building the constraint for this pattern is rather sim-
ple. We allow socket API calls and make sure that they are targeted onto the view
itself. Optionally, we allow controller components to create socket links onto view
components to do the correct wiring of child components into the view’s layout.
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Pros and Cons
Advantages

• Standard layouts have to be implemented only once and are then available
for different uses throughout the whole application.

• No complication by introducing unnecessary components, keeping the appli-
cation as slim as possible.

• Widgets that are using the generic socketmechanism (2.2) can be positioned
correctly using the link feature (2.2).

Disadvantage

• This pattern might often look like the best choice, but introducing additional
model and controller components with growing complexity in the aftermath
is very difficult.

Alternatives
With increasing complexity of the presentation logic (2.3), a separate model-controller
dyad is imposed. The pattern for this case is the Managing Widget pattern (5.5). It
unites a generic layout with advanced presentation logic. The Rich Widget pattern
(5.4) is an alternative, if the generality of the layout it not present.

Code Sample

1 app.ui.child-component = cs.clazz({
2 mixin: [ cs.marker.view ],
3 protos: {
4 render: function () {
5 cs(this).plug({
6 object: $.markup(’child-markup’),
7 spool: ’materialized’
8 })
9 }
10 }
11 })
12
13 app.ui.non-managing-widget = cs.clazz({
14 mixin: [ cs.marker.view ],
15 dynamics: {
16 content: $.markup(’three-column-layout’)
17 },
18 protos: {
19 render: function () {
20 var self = this
21 cs(self).socket({
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22 name: ’column1’, type: ’jquery’,
23 ctx: $(’#column1’, self.content)
24 })
25 cs(self).socket({
26 name: ’column2’, type: ’jquery’,
27 ctx: $(’#column2’, self.content)
28 })
29 cs(self).socket({
30 name: ’column3’, type: ’jquery’,
31 ctx: $(’#column3’, self.content)
32 })
33 }
34 }
35 })
36
37 app.ui.ctrl = cs.clazz({
38 mixin: [ cs.marker.controller ],
39 protos: {
40 create: function () {
41 cs(this).create(’view/child1’,
42 app.ui.non-managing-widget,
43 app.ui.child-component
44 )
45 },
46 render: function () {
47 var self = this
48 cs(self, ’view’).link({
49 target: cs(self, ’view’),
50 socket: ’column1’,
51 scope: ’child1’
52 })
53 },
54 show: function () {
55 cs(this, ’view/child1’).state(’visible’)
56 }
57 }
58 })

Listing 5.8: Non-Managing Widget

Listing 5.8 shows a small example, how the non-managing widget can be integrated
into a Component Tree. First, the participating components have to be created by the
controller. This is done in line 41. Now, in this particular instance, we choose a three
column layout which is loaded in line 16 and looks like depicted in Listing 5.10 with
its style in Listing 5.9. After that, upon entering the materialized state through the
render method, the non-managing widget defines three sockets, see lines 21, 25 and
29. For one of these sockets, a link is created (2.2) in line 48. It is important that
the name of this link is “default” since the view component plugs itself into the next
“default” socket it can find, see line 5. This abstraction makes the child component
independent from the underlying view component. Line 55 shows, that the capability
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of managing the child component lies in the controller component.

1 .column { width:50px; height:90px; float:left; }

Listing 5.9: Non-Managing Widget Markup (CSS)

1 <markup id="three-column-layout">
2 <div>
3 <div id="column1" class="column"></div>
4 <div id="column2" class="column"></div>
5 <div id="column3" class="column"></div>
6 </div>
7 </markup>

Listing 5.10: Non-Managing Widget Markup (HTML)

Known Uses
ComponentJS Tracing

A view, providing a box that is capable of having several nested components ar-
ranged horizontally.

Midas
We have two components that are usually the only ones in their parent layout.
Now they should be arranged side by side in a common perspective. Therefore,
correct links have to be set up to coordinate their positioning.

5.7. Pattern 7: Externalized Presentation Logic
Input validation is an important part of a user interface. It makes the work-flow more
convenient for the user and depicts problems clearly, right where they occur. However,
from a developers point of view, input validation is a good chance to save unnecessary
server communication, if performed on the client-side. Of course, we cannot ignore
that for some consistency checks, the comprehensive knowledge of the back-end is
indispensable. This pattern outlines how client-side validation of any kind of user
input, for example text, selections etc. can be carried out.

Condition
Like mentioned in the introduction, this pattern focuses on client-side validation only.
We can divide user input into two validation categories. For one category, validation
can be performed by the presentation logic (2.3) in the model, holding the information
to be validated. Whereas input that belongs to the other category needs additional
data to check its validity, the latter is a clear indicator for this pattern. The result is
the necessity to delegate the validation to another component that has all information
at hand to decide whether the input is valid or not, which leads us to an externalized
presentation logic (2.3).

52



5.7. Pattern 7: Externalized Presentation Logic

Structure

Figure 5.7.

Usually, we would expect that this pattern requires at least one component captur-
ing user input, i.e. a component wielding the view trait (4.1). But we want to abstract
from that due to the fact that it is sufficient to have a model component that reflects
any user interaction via its model members, given the event (2.1) and data binding
(2.1) has been implemented meticulously. This leads us to a model component with
its corresponding controller, since the controller is the one allowed to communicate
with the rest of the Component Tree. Another controller component located some-
where closer to the root of the Component Tree is providing the concrete validation
functionality. Figure 5.7 shows this component constellation.

Communication
The first step of the communication is to let the model component define the presen-
tation model (2.3) upon itself and to wire the data and event binding up. So far, the
communication does not deviate from the one for the Rich Widget pattern. As the
dashed line of the view component indicates, this component is not part of the pattern
but for sake of simplicity we use it as minimal example. Further, it is also conceivable
to replace it with any other component that is allowed to access a model, e.g. can our
model component be part of the Shared Model Component (5.2) or the model based
derivative of the Sub-tree Information Delivery pattern (5.3).
At this point, we have two options at hand. Which one to prefer depends on the vali-

dation process of the controller C0. The first possibility is the interception of set opera-
tions on the particular model member by observing them. Afterwards, the changes can
be propagated to the remotely located controller, which in turn can instantly return
the validation result for them. It thus has a chance to prevent values from being set or
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can modify them beforehand. This is only possible, if the validation can be performed
synchronously.
The second option is to have two independent model members, one for potentially

invalid data and one for valid data. The former, transient data must only be used by
the validating component, whereas the latter can be observed by each component that
relies on valid data. We need this, when the validation is done asynchronously, which
tends to be the common case in the user interface domain.
Now the different observers have to be set up. Controller C1 observes (2.2) the

model member containing the value candidate. Furthermore, a second observer on C0

is waiting for validation requests to pass by. After that, when any component is trying
to change the value of a model member, C1 publishes an event containing the value
candidate and optionally the current value. This event is caught by C0 and its content
is validated.
So far both approaches are the same, but they differ in the way the result is trans-

lated back into the model. In the synchronous case, the controller C0 simply returns
the validation result. On the other side, in the asynchronous case, the controller sets
the value using a callback it has received with the validation request. After that, the
model contains valid data in both cases.

Rationale
In many cases, user input can be validated within the model that is tied to the view
using event and data binding. As an example, whether a given piece of information is a
valid number, string or matches any kind of regular expression can be decided directly
on the data. But whenever a parent component of a model is required to validate the
integrity of that input, we talk about externalization of the presentation logic. The
model component intercepts write operations and exposes the possibility to prevent
the value from being set or at least to modify the value before it is permanent.

Constraints
The constraints for the participating components have already been set up in their
respective trait chapters. See appendix, Listing B.3 for the constraints relevant for
the controllers and Listing B.2 for the model.

Pros and Cons
Advantages

• Delegates the decision making process to the component where the neces-
sary information is available and thus improves the Logical Separation.
• Flexible handling of synchronous as well as asynchronous validation logic.

Disadvantage

• Grows complexity by introducing mid to long range dependencies.
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Alternatives
The Common Ancestor Communication pattern (5.8) could serve as an alternative, al-
though it has a slightly different semantic. In the pattern presented in this chapter,
the mechanism to control values of model members is offered by an underlying com-
ponent, but whether it is used for validation or not depends on a component that is
located upwards the hierarchy, i.e. it depends on the structure of the application. In
the Common Ancestor Communication pattern, the component itself would directly
request the validation and therefore strictly enforce it. In contrast, we can say that
here an Inversion of Control takes place.

Code Sample

1 app.ui.model = cs.clazz({
2 mixin: [ cs.marker.model ],
3 protos: {
4 create: function () {
5 cs(this).model({
6 ’state:active-tab’: { value: 0, valid: ’number’ },
7 //Addition for asynchronous scenario
8 ’state:proposed-active-tab’: { value: 0, valid: ’number’ }
9 })
10 }
11 }
12 })
13
14 app.ui.controller1 = cs.clazz({
15 mixin: [ cs.marker.controller ],
16 protos: {
17 create: function () {
18 cs(this).create(’model’, app.ui.model)
19 },
20 show: function () {
21 var self = this
22 //Synchronous scenario
23 cs(self, ’model’).observe({
24 name: ’state:active-tab’, operation: ’set’,
25 func: function (ev, nVal, oVal) {
26 var validated = cs(self).publish({
27 name: ’validate-active-tab’, args: [ nVal, oVal ],
28 directresult: true
29 })
30 ev.result(validated)
31 }
32 })
33 //Asynchronous scenario
34 cs(self, ’model’).observe({
35 name: ’state:proposed-active-tab’,
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36 func: function (ev, nVal, oVal) {
37 var cb = function (valid) {
38 cs(self, ’model’).value(’state:active-tab’, valid)
39 }
40 cs(self).publish(’validate-active-tab’, nVal, oVal, cb)
41 }
42 })
43 }
44 }
45 })
46
47 app.ui.controller0 = cs.clazz({
48 mixin: [ cs.marker.controller ],
49 protos: {
50 create: function () {
51 cs(this).create(’model’, app.ui.model)
52 },
53 show: function () {
54 var self = this
55 //Synchronous scenario
56 cs(self).subscribe({
57 name: ’validate-active-tab’,
58 func: function (ev, nVal, oVal) {
59 var conf = confirm(’Do you want to switch from tab ’ +
60 oVal + ’ to tab ’ + nVal)
61 ev.result(conf ? nVal : oVal)
62 }
63 })
64 //Asynchronous scenario
65 cs(self).subscribe({
66 name: ’validate-active-tab’,
67 func: function (ev, nVal, oVal, cb) {
68 $.post(’server’, [ nVal, oVal ], function (result) {
69 cb(result ? nVal : oVal)
70 })
71 }
72 })
73 }
74 }
75 })

Listing 5.11: Input validation performed by a remotely located controller

As we already know, this pattern can be implemented in two ways. In order to make
it better understandable, we provide an example outlining both scenarios. At first,
we define a model in line 5 which needs an additional member for the asynchronous
variant to store transient data. In both cases controller C1 observes the model mem-
bers. In the synchronous case however, the set operation is observed so that the result
of the validation procedure can be passed directly into the model as seen in line 23.
The asynchronous scenario is shown in line 34, where a callback function is created
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and provided with the validation event. The reaction on validation requests is imple-
mented in lines 56 respectively 65. Here a modal prompt is used as an example for a
synchronous and a network request for an asynchronous routine.

Known Uses
P1

If an input into the mask is done, the data is sent to a parent component, which
has all information at hand to validate the input. Afterwards the correct data is
sent back to the initial component.

ComponentJS Tracing
To guard the selection of an item in a list, the list itself fires a click event for
containing items. It also provides a method to select a particular item. Whether
the user is allowed to select an item or not, is decided from a logic outside the
list component.

5.8. Pattern 8: Common Ancestor Communication
When having a look at the hierarchical structure of the Component Tree and the com-
munication paths described by events traveling along the tree (2.3), we soon notice
that it does by default only support communication from the root downwards and from
all components upwards to that. But while implementing an application, we may run
into the issue of having to communicate between components that maintain a sibling
relation. One not far to seek solution would be to propagate an event upwards to the
root and an event down to the target component, afterwards. This approach obviously
leads to an omnipotent root component that is aware of the coherence of the remaining
application and violates Logical Separation as well as the whole component oriented
approach.
In contrast, the Common Ancestor Communication pattern allows us to establish a

link among sibling components. At this point, instead of choosing the root component
as a broker, we use the closest common ancestor connecting the two components that
want to communicate.

Condition
Usually the components in an application are highly dependent on each other and
even if they are loosely coupled they require each other to conduct a use case. In
many cases, the required components for one component are its parent components.
Here the standard communication along the Component Tree suffices. But due to hi-
erarchical decomposition (2.1) in some cases they are sibling components, i.e. neither
is a parent of the other. If a communication among these components is necessary, we
need to use a common ancestor of them to coordinate their communication.
After the connection is established, a peer-to-peer communication via callback func-

tions is possible. It is also conceivable to use this pattern as a replacement for the
common model access via the value method (2.2). This is recommended, when the
requesting component must not be aware of the underlying model or when the model
is no ancestor of it.
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Structure

Figure 5.8.

In Figure 5.8 the three participants of this pattern are displayed. First, we see con-
troller C0, which needs to communicate with controller C1. Therefore, both are sibling
components and require to share controller C2 as a parent. The structure between C2

and the siblings is irrelevant for the pattern and thus dropped.

Communication
The Common Ancestor Communication is a highly flexible pattern, which can be ap-
plied in many scenarios. The initial situation is that controller C0 needs to retrieve
some piece of information or a task to be performed. This necessity is expressed by
publishing an event that bubbles up the Component Tree, giving each component on
its path the opportunity to react and deal with it. It is not required that C0 knows where
its request can be fulfilled. This is where controller C2 comes into play by subscribing
to requests it can process. C2 can be any of the components on the path between the
root component and C0. It knows how to satisfy the request of C0. Obviously, it can
stop the event propagation and hence block any other component from processing it,
too.
Outgoing from C2, several options are conceivable. The first, simple one, is a direct

response of C2, possible when it has the necessary information at hand. A second
scenario is the one giving this pattern its name. Controller C2 has the information, to
which sibling of C0 the request has to be delegated to. This is done using the call
method (2.2). Of course, the delegate can transitively propagate the request further.
In both cases, C0 provides a callback function with the event, which is later used to
send the result of the request back to it. The signature of this callback function is part
of the interface definition for components that may answer requests of C0. Making
use of a callback function enables us to handle both, synchronous and asynchronous
processing of those requests.

Rationale
Every time an action cannot be fulfilled locally at an individual component, it has to
request help from its parent components. In some of these cases, a parent component
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can directly answer the request and the action can be finalized. In other cases, the
component only has the information which other component to ask for help and hence
can delegate the request. Both situations are the same from the requesting compo-
nents point of view. It supplies the help request with a callback which later delivers
the result.

Constraints
Listing B.3 of the appendix contains all constraints for this pattern. It allows a con-
troller component to call the publish, register and subscribe API methods onto
itself as well as to perform call operations on child controllers.

Pros and Cons
Advantages

• Transparent location of C0 and C1, leading to good Loose Coupling and Logi-
cal Separation.

• Component C0 does not have to know whether the requested information is
retrieved from a third component or C2 itself.

• Controller C2 can dynamically decide on which component to dispatch the
request of C0. It even can directly resolve the request, if possible.

Disadvantage

• The delegation of C2 can lead to a quite long sequence of call statements in
order to finally reach C1.

Alternatives
Considering the communication directions from the mediating controller downwards
the Component Tree, the Sub-tree Information Delivery pattern (5.3) could be an al-
ternative, when combined with the standard event publishing mechanism (2.2). Due
to the uniqueness of this pattern, no other alternative seems feasible.

Code Sample

1 app.ui.controller0 = cs.clazz({
2 mixin: [ cs.marker.controller ],
3 protos: {
4 show: function () {
5 var self = this
6 var cb = function (result) {
7 if (result.success)
8 self.user = entityManager.load(’User’, result.id)
9 }
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10 cs(self).publish(’authenticate’, cb)
11 }
12 }
13 })
14
15 app.ui.controller2 = cs.clazz({
16 mixin: [ cs.marker.controller ],
17 protos: {
18 show: function () {
19 var self = this
20 cs(self).subscribe(’authenticate’, function (cb) {
21 cs(self, ’login’).call(’authenticate’, cb)
22 })
23 }
24 }
25 })
26
27 app.ui.controller1 = cs.clazz({
28 mixin: [ cs.marker.controller ],
29 dynamics: {
30 callback: null
31 },
32 protos: {
33 create: function () {
34 var self = this
35 cs(self).register(’authenticate’, function (cb) {
36 self.callback = cb
37 cs(self).state(’visible’)
38 })
39 },
40 show: function () {
41 $(’#login’).click(function () {
42 $.post(’server’, credentials, function (result) {
43 self.callback(result)
44 })
45 })
46 }
47 }
48 })

Listing 5.12: Authentication request delegation

The example in Listing 5.12 involves three controllers. Controller0, which needs to
load the currently logged in user to display details, controller2 acting as the broker
in this scenario and controller1, which can perform user authentication.
First, in line 35, the log-in component registers a service named “authenticate”. It

takes a callback as parameter and switches the modal log-in dialog to visible, when
triggered. We can imagine that controller0 is the controller of a toolbar component.
If the toolbar is shown, then it should display the currently logged in user. To achieve
this, it first sets up a callback, in order to receive the users ID, line 6, and then pub-
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lishes the user authentication request in line 10. This event reaches controller2 and
activates its relaying in line 20. Here the decision is made, to call the log-in dialog,
which is an instance of app.ui.controller1 (see line 27) with the callback function as
a parameter. Since asynchronicity is inherent in the log-in dialog, the result can only
be delivered when the user hits the “login” button and a request to the server was is-
sued. In line 43, the result of the server communication is passed back to controller0
using the supplied callback.

Known Uses
ComponentJS Tracing

A common panel component is used as information broker between the different
tabs. Each tab can communicate with another one by this common ancestor.

Midas
Works similar to the code sample above. When an entity is requested at the server
and it returns “unauthorized”, an event is issued, requesting user authentication.
Afterwards the entity is re-requested at the server.
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This chapter contains the constraints, that are not derived from any particular pattern
and thus do not belong to Chapter 5. When having a look at them, it becomes quickly
clear, why it is useful to set them up and why they improve the overall quality of an
application.

6.1. Unused communication endpoints
Unused code is not really a problem in most deployment scenarios, but may indicate
messy code and increase maintenance effort. It can be a result of a lack of developer
experience or remnants of the development process. Many Integrated Development
Environments (IDE) provide mechanisms to detect this code. We can achieve the same
by setting up a few temporal constraints to find unused communication endpoints. The
endpoints are introduced by particular operations within our component system. For
example, the observe operation introduces an endpoint for value changes, triggered
by the value operation. From this tuple, we can derive that, if the model member,
observed by an observe call is never set throughout the run of an application, it is
likely that the observer is dead code. Listing 6.1 shows a constraint that checks this
issue. It is essential, that the terminate participant is always the last member in the
sequence to be checked.

1 temporal-constraint observe-value {
2 rationale {
3 Value expects an observe beforehand, otherwise it would be useless.
4 }
5 sequence {
6 a << b << terminate
7 }
8 filter a {
9 operation == ’observe’
10 }
11 filter b {
12 operation == ’value’
13 && parameters.value != undefined
14 }
15 link {
16 a.parameters.name == b.parameters.name
17 && isParent(a.origin, b.origin)
18 }
19 }

Listing 6.1: Unused observation
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It ensures that the constraint is first checked, when the application has terminated
and thus communications that would heal a monitor of such an unused-rule cannot be
produced any more. The following list contains all the operation pairs we can check
for, using analogous constraints.

• observe << value << terminate

• register << call << terminate

• subscribe << publish << terminate

• socket << plug << terminate

• property (set) << property (lookup) << terminate

6.2. Coding convention enforcement
Another point, where we can improve code quality, is the enforcement of coding con-
ventions. These conventions reduce maintenance effort and make the code more un-
derstandable for developers that are new to the project. The particular coding con-
vention this section is aiming at is the correct labeling of model members. As we can
see from the user interface component architecture introduced in Chapter 2.3, there
are five different types of members designated for the presentation model. It turned
out that it improves intelligibility significantly, if members of these categories are uni-
formly prefixed. For parameter values, the prefix “param:” was chosen, for command
values “cmd:” and for the remaining types “state:”, “data:” and “event:”, respectively.
It is obvious that we cannot check whether each model member was assigned to the
correct group. But we can assure that each of them starts with at least one of the men-
tioned prefixes. It seems natural to do this check whenever a new model is defined,
but since we operate on communication tuples and have only marginal insight on the
passed parameters, we cannot perform it at this point.

1 peephole-constraint prefix-check {
2 rationale {
3 The prefixes for model members have to be chosen according
4 to their role within the presentation model.
5 }
6 condition {
7 operation == "value"
8 && !(startsWith(parameters.name, "param:")
9 || startsWith(parameters.name, "data:")
10 || startsWith(parameters.name, "state:")
11 || startsWith(parameters.name, "cmd:")
12 || startsWith(parameters.name, "event:"))
13 }
14 result FAIL_FINAL
15 }

Listing 6.2: Coding convention enforcement
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Together with the assumption that during an examination process the whole pro-
gram is touched, we can just check for the existence of prefixes whenever a single
model member is addressed within a communication. Listing 6.2 shows an example
of how we can perform this check. Another way would be to build a constraint for
observe operations, but since we already ensure in Section 6.1 that no unused obser-
vations are made, we can simply stick to monitoring the value calls.

6.3. Required communication sequence
In this section we introduce constraints that are more of theoretical nature, since
their violation leads to hard faults. Thus, usually they are checked by the component
framework itself. In most cases, some communications are required before others
can take place, for example each component has to be created before receiving any
communication. Listing 6.3 shows this circumstance. Other examples are sockets that
has to be defined before any component can plug into them or model members which
have to exist when an observation is registered. The latter is modeled in Listing 6.4,
which uses the auxiliary functions isParent and contains in order to first ensure that
the model can be accessed by the observe respectively value call and afterwards to
check for the existence of the particular member within that model. A last use case for
such a constraint is to check whether a service has been registered before it is called.

1 temporal-constraint existence {
2 rationale {
3 The component needs to exist before we can interact with it.
4 }
5 sequence {
6 a << b
7 }
8 filter a {
9 operation == ’create’
10 }
11 filter b {
12 operation != ’create’
13 }
14 link {
15 b.origin == a.origin
16 }
17 }

Listing 6.3: Required communication sequence - Component existence

1 temporal-constraint model-member-def {
2 rationale {
3 Model members have to be defined before they can be observed
4 or accessed.
5 }
6 sequence {
7 a << b
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8 }
9 filter a {
10 operation == ’model’
11 }
12 filter b {
13 operation == ’observe’
14 || operation == ’value’
15 || operation == ’touch’
16 }
17 link {
18 isParent(a.origin, b.origin)
19 && contains(a.parameters, b.parameters.name)
20 }
21 }

Listing 6.4: Required communication sequence - Model member existence

6.4. State communication coupling
It is often necessary that a developer is aware of a huge amount of relevant meta in-
formation, to conduct the implementation. Most of this information concerns coding
guidelines as well as conditions vital for the application to work properly. One of the
latter is the definition of the moment when particular actions are allowed to be per-
formed. An example would be: In which state is a view component permitted to plug
itself into an underlying socket? There is no unambiguous answer for this question,
but it is indispensable to standardize this throughout an application. It increases the
possibilities of parallel development and reduces the effort of integrating the compo-
nents.

1 peephole-constraint plug-state-coupling {
2 rationale {
3 A view has to conduct its plug operations
4 when it is in the materialized state.
5 }
6 condition {
7 operation == "plug"
8 && originType == "V"
9 && state(origin) != "materialized"
10 }
11 result FAIL_FINAL
12 }
13
14 peephole-constraint socket-state-coupling {
15 rationale {
16 A view has to conduct its socket operations
17 when it is in the materialized state.
18 }
19 condition {
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20 operation == "socket"
21 && originType == "V"
22 && state(origin) != "materialized"
23 }
24 result FAIL_FINAL
25 }

Listing 6.5: State communication coupling

Listing 6.5 shows a state synchronization for the socket, plug operation pair. We
can bind both operations to the materialized state, since the component providing
the socket is always a parent of the plugging component and thus will be the first of
them to perform the life-cycle method (2.4) to enter this state.
By enforcing this guideline for all components within an application, we can guar-

antee seamless integration of all visual components. Additionally, we can extend this
procedure to standardize other operations as well. An example is the moment, when a
view component starts to observe its underlying model. It is legit to bind the observe
operation to the visible state, since earlier data synchronization would just waste
performance to actions that are not visible anyway.
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7. Applying the Pattern Catalog to Use
Cases

We describe three common use cases and how they can be solved by using one single
or a composition of patterns from the catalog introduced in Chapter 5. The presented
use cases do not claim to provide an exhaustive overview but are only some that we
came across during our pattern discovery process. Furthermore, when selecting the
examples for this chapter the focus lay on cases where the cooperation between dif-
ferent patterns is vivid.

7.1. Login Dialog
The triad, displayed in Figure 7.1 is a combination of the Rich Widget pattern (5.4)
and an instance of the controller component trait (4.3). The model of the Rich Widget
contains all necessary information for a login attempt, which are username and pass-
word. It also holds an event triggered when the “login” button is pressed and several
state variables to indicate server responses as well as client side validation results,
which are for example empty credentials.

Figure 7.1.
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The view of the Rich Widget provides the user interface with its two input fields and
the “login” button, embedded into a modal dialog window. The server communication
is performed by the controller, which observes the button’s click event.

7.2. Wizard

A wizard is an often used strategy to collect a major set of information from the user
in a step-by-step manner. The used patterns are the Managing Widget pattern (5.5)
and the Lean Widget pattern (5.1), where the model of the Managing Widget is also
acting like described in the Shared Model Component pattern (5.2). We can see this
composition in Figure 7.2.

Figure 7.2.

The views on top of the Managing Widget triad provide the layouts for each step the
wizard passes through. The navigation and progress indicator is displayed by the com-
prehensive view of the Managing Widget and managed by the underlying controller.
This controller also manages the state of each child view.
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7.3. Master-Detail
The third use case we want to have a look at, is the master-detail construct. It consists
of two RichWidgets (5.4). One widget is capable of displaying a list of entities, whereas
the other one can present the details of a individual entity instance.
The user can select an entity in the list in order to inspect the details of that entity

inside the detail widget. Here, the Common Ancestor Communication pattern (5.8)
is used to transmit the selected entity from the master to the detail widget. This use
case also allows the usage of several views implementing different representations of
a single entity instance. The only requirement for the mediating component is to be a
common ancestor of all participating views.

Figure 7.3.

A simple version of this use case is displayed in Figure 7.3. Here, a single master
widget on the left provides information for the detail widget on the right.
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The tool, which conducts the constraint checking and the run-time monitoring of the
application, is the subject of this chapter. Figure 8.1 shows its architecture. It is
split up into three tiers. The one on the top is an arbitrary application on some web
server on the web or intranet. The only requirement is that it uses ComponentJS as a
component framework. On the other side, at the bottom of our architecture, we have
the browser of the developer. The browser has two duties: Displaying the application
under scrutiny and doing the actual constraint checking. How this is done is described
in detail in Section 8.1.

Figure 8.1.: Architecture

A server talking several protocols on three different ports forms the core of our tool-
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ing. On the left side of Figure 8.1 we see the HTTP proxy functionality. It is a transpar-
ent proxy, hence the application does not notice anything, when loaded through the
proxy server. Of course, the browser has to be configured to use it, so that it in turn
can read and modify all data passing through. This is necessary to inject the Trac-
ing plug-in 8.2 as well as to instrument the application’s code, so that we can later
determine which part of the code did what ComponentJS API calls. The instrumen-
tation translates the application, here App, to an instrumented derivative App’. The
proxy based approach has one huge advantage: The developer of the system under
scrutiny does not have to know or plan that his application is analyzed. We can just
start considering any arbitrary application.
Besides the proxy module, the core also includes a web server itself, serving the

user interface of our tracing module. We can see this on the right hand side of Figure
8.1. The last server, settled in the core tier, implements the WebSocket protocol. It is
used to pass traces, recorded by the injected tracing plug-in to the user interface of
the ComponentJS Tracing module, for further examination.
At this point, we want to remark that the production of traces is not limited to Com-

ponentJS and the plug-in, developed within this thesis. With aspect-oriented program-
ming and dependency injection, a Java application can be instrumented and traces
can be recorded, as well. These traces can then be directed to the WebSocket server,
which in turn can handle them like traces of a ComponentJS based application.

8.1. ComponentJS Tracing
The ComponentJS Tracing module is the core tier of our tool. It is implemented using
JavaScript and executed with NodeJS. It consists of a server side part and a client side
part. The server application sets up the proxy server as well as the WebSocket relay
server. Within the proxy server, a transpiler transforms the code of the application to
enable correct detection of the source of a trace.

Proxy Server
In order to be able to intercept HTTP requests, the proxy server uses the NodeJS li-
brary “http-proxy-simple” and registers several listeners to capture HTTP traffic. The
first listener is placed on “http-intercept-request” events. It removes the HTTP head-
ers, responsible for caching and thus forces that every request delivers a fresh copy
and no deprecated code is used. The second listener is attached to “http-intercept-
response” events, which are triggered when the remote host has responded but be-
fore the response was forwarded to the browser. This listener enables us to look for
component code on the one hand and for the ComponentJS library file on the other
hand. As the tracing plug-in will later lookup the source component of an API call
by walking the caller hierarchy upwards, we need to give anonymous callback func-
tions the information in which component they reside. This is done by wrapping them
in a special ComponentJS function call. Listing 8.1 shows a code snippet before and
after the transpilation procedure. The “fn” wrapper is annotated with the necessary
information for the tracing plug-in.

1 //Before transpilation
2 cs(this).subscribe({
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3 name: ’validate-active-tab’,
4 func: function (ev, nVal, oVal) {
5 }
6 })
7 //After transpilation
8 cs(this).subscribe({
9 name: ’validate-active-tab’,
10 func: cs.fn(function (ev, nVal, oVal) {
11 })
12 })

Listing 8.1: Transpiler example

Like already mentioned, we also have to modify the ComponentJS library file by
appending the tracing plug-in and the tracing remote plug-in, which just receives the
traces from the tracing plug-in and passes them to the server using the WebSocket
protocol and a third-party library for the pure WebSocket handling. To be able to alter
the correct files, the ComponentJS library file as well as the component files have to
be specified in a configuration file, loaded on start-up. The remaining HTTP traffic is
not affected by the proxy.

Websocket Relay
For efficient relaying, the WebSocket server maintains a room that clients, which are
interested in incoming traces, can join. Upon receiving a trace, a broadcast for all
clients within that room is performed. This enables us to have several trace consumers
listening to the current run at once. Besides the relaying, it can also be specified to log
the traces to a separate file as they occur in order to analyze them later. This is useful
when we have only one computer to do the execution of the system under scrutiny
and the monitoring of traces, whereby the execution should not be influenced by the
examination process. Apart from the monitoring feature, the WebSocket server can
also forward ComponentJS commands from the ComponentJS Tracing user interface
to the application, App’, to allow real-time manipulation of its component system.

Client
The client application makes up the biggest part of the tooling. As we will see in the fol-
lowing sections, it records traces, checks constraints and maintains the current state
of the system. Furthermore it provides additional tools to analyze the communication
within a ComponentJS based application. Three stages were necessary to build it.

Phase 1: Evaluation as a Google Chrome plug-in

Phase 2: Implementation of the application

Phase 3: Further evolution through experience in practice

In phase one we planned to build our tooling inside the Google Chrome browser
by providing an additional tab for its developers tools. After sophisticated evaluation
of the capabilities granted to the developers tools, we came to the conclusion that it
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was not possible to use this approach to achieve our goal. Further explanation can be
found in Section 8.5 in addition to other obstacles we had to overcome.
Phase two, the implementation phase, partially already began in phase one leaving

us with a HTML and JavaScript based rudimentary application which could be easily
converted into an SPA and hosted by our own web server, implemented in NodeJS. In
the planning phase we had already decided to use ComponentJS in order to proof our
own concepts and to follow the principle of eat your own dog food, which makes it on
the one hand more challenging for us — as we sure would have to deliver a “perfect”
architecture — but on the other hand provides an excellent component framework and
examples for this thesis, as well.
During the implementation, we followed the MVC/CT architecture pattern described

in Chapter 2.3. Inside the architecture, several patterns found throughout this thesis
were applied. One example is the Shared Model pattern (5.2) in combination with the
Lean Widget pattern (5.1) that were used to implement the toolbar. The Rich Widget
pattern (5.4) came to use in order to implement the grid component, which was reused
in nearly every tab.
Within phase three, the practice test, we received several change requests and ad-

ditional requirements from developers and expanded our tool to support the develop-
ment process as good as possible, which leads us to the tool as it is now. The following
sections will describe each part of it in detail.

Tracing

Figure 8.2.: Tracing

In the tracing tab, Figure 8.2, all traces are collected and displayed to the developer.
Using the toolbar, he can save the current run to a file for later examination. As already
mentioned in the WebSocket section (8.1), the user can also load old runs by uploading
previously exported files or ones recorded by the websocket relay. If the analysis is
performed online, then the “check continuously” option can be enabled in order to
send each incoming trace instantly to the constraint checker. Otherwise, the “check
once” button can be used to replay a present run, like it was recorded and forward it
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to the constraint checker.

Checking

Figure 8.3.: Checking

As we can see in Figure 8.3, the checking section is arranged using a three column
layout. Hereby, the grid component, we have already seen in the tracing perspective,
is also instantiated, but with a slightly altered configuration allowing it to fit in less
space by omitting the parameters column. It is located in the left most column and
displays all violating traces, thus it is rather an overview than the actual informative
part. In the column in the middle, the user can see the details of a selected trace,
including its parameters. The column on the right contains a list of name, rationale
tuples that are violated by the particular trace.
The “send terminate” button triggers the checking of constraints, containing the

terminate participant, as described in the run-time verification chapter (3.4).

Peephole Constraints

The peephole constraints tab, Figure 8.4, is used to manage one or many sets of those
constraints. By default, a standard set is provided, containing the constraints deliv-
ered with this thesis. The editor supports syntax highlighting for the DSL, describing
each constraint. Also included is functionality to export, import and add new sets of
constraints. Furthermore, the different sets can be enabled and disabled indepen-
dently in order to choose the correct compilation of constraints for each particular
project. Whenever a constraint is changed or introduced, it is syntactically and se-
mantically checked. For example the unique character of the constraint identifiers
can be ensured. If an error occurs, it is displayed in the status bar right at the bottom,
see Figure 8.4.
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Figure 8.4.: Peephole Constraints

Temporal Constraints

In order to improve intelligibility and for a clear distinction between the different con-
straint types, a separated tab (see Figure 8.5) is dedicated to temporal constraints. Of
course, it has the same export and import capabilities and supports syntactic as well
as semantic validation. In contrast to the peephole constraints, a deeper semantic val-
idation is possible and thus appropriate. First of all, duplicate constraint identifiers
are eliminated. Afterwards the sequence section is checked. It has to contain two
or more unique participants and the terminate participant has to be the last one, if
present. Furthermore, it is checked that each filter expression is associated with a
member of the sequence expression. Last, we validate that each participant used in
the link segment has a corresponding element in the sequence, as well.

Figure 8.5.: Temporal Constraints
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After the constraint collection has passed both validation steps, a monitor is con-
structed for each constraint. How these monitors work is described in detail in Section
8.4.

Component Tree

Figure 8.6.: Component Tree

As we have already seen in Chapter 3.4, the availability of information about the
systems state plays an essential role for run-time verification. Since we record each
communication between components, we do also trace the creation and state changes
of each component. These traces are filtered out and visualized by the component tree
tab, see Figure 8.6. It displays the components currently present in the application as
well as additional information, e.g. their states, subscribed events etc. It also provides
an interface for the constraint checker to retrieve this information in order to use it
for constraint condition evaluation.
Furthermore, the tab shows the user each communication among the different com-

ponents upon pressing the “communications” button or hovering over a component.
Here, lines between components indicate that a trace was recorded between them.
The thickness of the line indicates the amount of communication done, divided into
four categories: 10, 20, 30 and more than 40 traces, connecting the components. In
addition to the status quo visualization, the component tree also displays constraint
violations by coloring these communications red. If a component is doing an invalid
API call onto itself, it is completely colored in red.
Apart from the current state, the user can also manipulate the component system

of the system under scrutiny by using the remote console, triggered by the “remote”
label at the bottom left corner of the tab.

Statistics

Sometimes, aggregation of occurring traces gives a good hint on what is wrong with
an application. For example, bad performance leads to poor user experience. Too
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Figure 8.7.: Statistics

much server communication can be a reason for this. By aggregating the different
communications, a developer can see on a first glance, which methods might be called
too often and thus represent a good starting point for optimization. In addition to
the raw counting ability, the statistics tab (see Figure 8.7) also provides the option
to ignore parameters, collapsing the method calls that only differ in their arguments.
Further, by using the “clear” and “record” button, the developer can also easily record
only a part of the behavior of the application and thus set the focus right where he
wants to identify problems. Of course, the grid component is also reused for this
perspective.

8.2. Tracing plug-in
The tracing plug-in for ComponentJS is structured into one recording plug-in, which is
generating traces from API calls, and two smaller plug-ins that consume these traces
and direct them to different outputs. Each trace is an instance of the “Tracing” class.
It carries the following information.

Timestamp Elapsed time since the tracing has begun.

Source Component issuing the API call.

SourceType Type of the source component.

Origin Component receiving the API call.

OriginType Type of the origin component.

Operation Name of the issued API call.

Parameters Parameters of interest of that API call.
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Once all information is present, the trace can be flushed triggering the anchor point
ComponentJS:tracing in which the two other plug-ins latched to process the traces.
We can now have a look at the tracing plug-in itself. It uses hooks provided by the
ComponentJS library and hereby triggers the tracing algorithm as well as retrieves
the relevant information for the traces. The following hooks are deployed to produce
traces directly when they are called.

ComponentJS:state-change-call Emits traces of the “state” operation in order to en-
able ComponentJS Tracing to reflect the current state of all components.

ComponentJS:comp-created Leads to “create” traces to indicate component creation
to the component tree tab, mentioned in the last section.

ComponentJS:comp-destroyed Is analogous to the previous hook, while taking care of
component destruction.

The most crucial part of the tracing plug-in lies in the determination of the source in-
formation of each API call, i.e. the calling component. Since nearly all of these calls are
issued within the life-cycle methods (2.4) of the respective component, we have to first
annotate these methods with the component by latching into the “ComponentJS:state-
method-call”. In addition to that, we have to annotate the callbacks used in the API
calls with the same information, since they may also contain API calls themselves.
Here the “fn” function comes into play, which is wrapped around each callback by the
transpiler inside the proxy server. It bridges the information from outside the callback
to be available for trace generation inside.

Figure 8.8.: Tracing Plug-in

After this preparation, we are only one step away from the real tracing mechanism.
The problem that is still present is outlined in Figure 8.8. The ComponentJS library
uses the event mechanism (2.4) for each kind of other API method and thus creating
traces on all API calls would lead to way to many traces which are not produced by
the developer himself but by the component framework. To circumvent this issue,
we check whether the source of a trace is the _cs.internal component, which is an
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artificial component used as source, whenever an API call is done by the framework
itself. See Chapter 9.2 for the future of this problem.
Finally, we can have a look at the core of this plug-in. In order to create traces, each

API method is overwritten, adding the instantiation of a new trace object and after-
wards calling the overwritten base function. Additionally, the parameters processing
hook is used in order to collect the parameters of interest inside the newly created
trace object and to set the source for subsequent API calls to _cs.internal.
Now as we have managed to create traces and to distinguish between the ones

caused by the developer and the ones introduced by ComponentJS, we can transmit
them for further investigation. The two plug-ins already mentioned in the introduction
of this section are redirecting them to the developers console or to the WebSocket Re-
lay, respectively.

8.3. DSL Parser
Our first shot for parsing the DSL introduced in Chapter 3.3 was to write a parser on
our own in order to maximize efficiency and suitability for our very own needs. During
further progress of the thesis and with growing size of our language, we realize that
a more flexible approach would be to use a library which allows us to specify our lan-
guage as a grammar and which would construct a parser according to our production
rules. We decide to use a Parsing Expression Grammar (PEG) since it creates very effi-
cient parsers, while their downsides do not interfere with our language requirements.
In particular, we choose the PEG.js implementation, which also has a decent error re-
porting and supports JavaScript like notation in its production rules. Listing 8.2 shows
that notation for the rationale section within our DSL. The code inside the curly brack-
ets at the end of the statement enclose the JavaScript code for that production rule,
whereas the part in the front specifies the pattern matching.

1 rationale
2 = "rationale" _"{" _ text:([^}]*) "}"_ { return text.join(’’).trim() }

Listing 8.2: PEG.js example

Peephole and temporal constraints share many production rules, as we have already
seen in their respective sections in Chapter 3.3. For that reason, we used our build
tool Grunt to combine several grammar fragment files to one composite file for each
constraint type. This approach ensures consistency across the different constraint
grammars and automates the common task of copying files together and afterwards
compiling them with the PEG.js compiler to generate a parser for them both.

8.4. Constraint checker
The constraint checker is responsible to examine the stream of incoming traces and to
check their consistency regarding the constraints specified by the developer. Hereby,
the prototype of each incoming trace is enriched by methods to compare, hash, match
and evaluate conditions on the data of each particular trace. Auxiliary functions, used
inside the conditions are also registered within the enrichment class and new ones
can be added easily.
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8.4. Constraint checker

Peephole Constraints
In general, the set of available peephole constraints is ordered in linked list like man-
ner each time, a constraint is changed. The list of constraints first follows the natural
order in which the constraints are written down inside the constraint declaration tab
and then the positioning directives after and before. As we have already seen in
Chapter 3.3, peephole constraints can be nested arbitrarily. Inside each nesting level,
the ordering is also computed as outlined above.
The peephole constraint checker is now ready to analyze incoming constraints. When

a trace arrives, we iterate over the list of constraints and the condition of each of them
is passed to the enriched trace object in order to evaluate it. If the condition for a con-
straint, containing sub-constraints, is true then the iteration proceeds with the nested
constraints first and resumes traversing the current level of constraints afterwards.
Each time a leaf constraint, i.e. a constraint with no nested constraints, is reached
and the evaluation of its condition returns true, the rationale of this constraint is ap-
pended to the list of matched constraints and the result of the trace is overwritten
with the result of that particular constraint. Like this behavior already indicates, the
constraint checker follows last match semantics, which was chosen to provide a more
natural sequence when writing down constraints. Through the annotation of all match-
ing constraints, we can identify multiple constraint violations at once, which are later
displayed in the checking panel.
Since we piggyback the result and rationales on each trace, the output of the con-

straint checker is also a stream of traces. We will see in the next section, that this
stream is picked up by the next layer of constraint checkers.

Temporal Constraints
The stream of traces, produced by the peephole constraint checker is directed to the
temporal constraints checker. However, the temporal constraint checker is not one
single instance, but a collection of monitors generated from the temporal constraint
specifications.
In a first step, each monitor checks whether an incoming trace matches one of its

filters or not. If so, it is sorted into a storage labeled with the matched filter’s name.
Now the checking mechanism is triggered with a few short circuit evaluations at its
beginning. If the matched trace is the first participant in the sequence, then nothing
more is to do and the checking is finished. In the other cases, the predecessor of the
participant is computed and it is checked if any traces reside in the storage for it.
If none are present, then the rule is violated and the evaluation can be aborted by
yielding an error. The last possibility is that the matched participant is the last one
in the sequence, then the storage of all participants are searched for traces satisfying
the link condition of the constraint. Are these traces found, then the evaluation can
be aborted and the constraint is not violated, otherwise it is.
One special case is the presence of the terminate participant inside the sequence

statement. A terminate trace is dropped, when the developer triggers it by pressing
the “send terminate” button inside the user interface or if the connection to the system
under scrutiny is lost. Then a copy of the sequence is created, inverted and the termi-
nate participant is removed. This process converts the sequence a << b << terminate
to b << a. After that, all traces in the storage of the new last participant, here a are
artificially processed like they have just arrived from the peephole constraint checker.
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Again all violating traces are labeled with the rationale of the violated constraint. Thus
the rationale as well as the actual data of the trace can be listed in the checking tab
(see Section 8.1).

8.5. A hard way to go
There were three hurdles to take until we had a sophisticated solution to trace down
API calls:

1. Live tracing of API calls, since these calls are also used inside the library itself.
Hereby, the obvious but nevertheless not trivial difficulty was to distinguish be-
tween calls inside and outside of ComponentJS.

2. Chrome plug-ins are not able to modify the contents of a web request. The first
mock-up of our plug-in is shown in Figure 8.9. This was also completely imple-
mented until the web request problem arose. Luckily, we could reuse nearly all
of the code, since the new approach using NodeJS was also based on JavaScript.

3. Writing a http-proxy module for NodeJS in order to modify the content of Java-
Script source files. We also published this to the NodeJS module packaging sys-
tem NPM.

Figure 8.9.: Chrome Plug-in
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9. Conclusions

9.1. Summary
We showed a heuristic approach to solve the problem of developing a component ar-
chitecture for user interfaces within but not limited to the web domain. Therefore, we
provide a pattern catalog, which gives an architect a sophisticated well-assorted ref-
erence to overcome nearly all requirements addressed to user interfaces nowadays.
This was only possible through meticulous examination of existing applications and
both their weaknesses as well as their strengths.
As the main focus lay on the communication between the components of an archi-

tecture, also the task of monitoring the communication within a running application
arose. To deal with this, we provide a tool, which is completely transparent for the
software developer. Although the pure monitoring functionality is already a huge im-
provement when it comes tomaintaining or extending user interfaces, it is obvious that
it would be an even bigger enhancement, if architectural decisions could be directly
checked in the communication stream. That is why we designed a DSL to formulate
such checks. The result is two types of constraints: Peephole constraints used to check
a single communication between two components and temporal constraints, which are
statements about sequences of several communications. Since the developed tool is
capable of checking these conditions at run-time, it allows the developer to observe
violations as they occur.
Besides the constraints arising from the architecture we identified other areas where

our constraint checking proved beneficial. These areas range from coding convention
enforcement over unused code detection to best practice imposition.
In the end, the presented approach is designed to improve software quality. This

starts in the early phases when the architecture is developed and continues throughout
the whole development process, until the product is finalized and can be shipped.

9.2. Future work
Even though we developed a quite wide range of concepts, which were also imple-
mented for practical use, there are still ideas for future development in the field of
this thesis.
One thing is that an additional category of constraints, that involves counting the

occurrence of traces, for example to model a communication protocol, where as many
acknowledgments as messages sent, have to be registered. The theory for this type of
conditions is not yet developed but would open up a completely new area.
Another enhancement would be the automatic suggestion of corrections for con-

straint violations. Here, the structure of the constraint set might play an important
role to find the best matching solution. Closely related to this is the idea of detecting
used patterns based on the observed communication and simultaneously identifying
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their correct usage. At the same time, a project specific blacklist for patterns seems
legit. Hereby, the developer is notified as a blacklisted pattern is detected.
Additionally, our tool implementation could be enriched by the ability to filter traces

by components, so that only the traces of a specified set of components are processed.
Along with this, a check might come in handy, verifying whether the selected compo-
nents follow a particular pattern or not. Another enhancement would be the prepa-
ration of further helper functions e.g. findClosestComponent(start, condition),
which finds the component, which is closest to the component provided in parameter
start and matches condition.
Last, the integration of our tool into the development process could be subject to

improvements, too. It is conceivable to ship pre-built ComponentJS components that
come bundled with a set of constraints, ensuring their correct usage. Beyond this
enhancement, an consolidation into a continuous integration platform seems to give a
good ROI. The best practice would be to take a test runner that makes use of Headless
Testing and tries to achieve maximum communication coverage. The application will
thus generate as much traces as possible, which can afterwards be analyzed by our
tool.
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A. Glossary
Adobe FlashTM Multimedia platform to present vector graphics, animations and rich

Internet applications. 5

API An Application Programming Interface (API) is a particular set of rules and specifi-
cations that a software program can follow to access and make use of the services
and resources provided by another particular software program that implements
that API. 6, 8, 9, 20, 24–27, 29, 31, 42, 49, 59, 74, 79–82, 84, 88, 90

Architecture Fundamentals HTML5 application to browse the architecture fundamen-
tals by Engelschall, Ralf S. (http://architecturefundamentals.com/app.html). 33

aspect-oriented programming Programming paradigm aiming to encapsulate cross-
cutting concerns and provide them where necessary. Example: Logging. 74

Backus-Naur Form Notation format for context free grammars. It is often used to de-
scribe the structure of languages within computer science. 15

broadcast The simultaneous delivery of a message to all members of a group. 36

cloudTeX Collaborative online LaTeX editor (http://cloud-tex.com/). 36, 41

Component Tree The hierarchical structure of the different components in an appli-
cation’s architecture. 2, 5, 7, 18, 23–27, 31, 36–39, 46, 51, 53, 57–59, 88, 92,
93

ComponentJS ComponentJS is a JavaScript library, providing a run-time component
system to structure a user interface hierarchically. 3, 6, 8, 9, 73–76, 80–82, 84,
86

ComponentJS Tracing The tool developed within this thesis. 32, 36, 44, 48, 52, 57, 61

Constructional Reusability High reuse of proven structural components and partial
solutions. 34, 46

CSS Cascading Style Sheets. 32, 52

dependency injection Removes hard-coded dependencies among software components.
These dependencies might be changed at compile-time as well as at run-time, in
some special cases. 74

DOM Document Object Model. 5, 7, 10, 46

Domain specific Information or knowledge that is related to a particular domain. 24

DSL A Domain Specific Language (DSL) is a language, usually simplifying the notation
of terms commonly used in a particular domain. 2, 15, 17, 20, 31, 42, 77, 82, 85
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eat your own dog food Make use of your own technology to justify its presents and
partially proof its convenience. 76

Exclusive Sovereignty Exclusive resource possession by its enclosing component. 33,
34, 36–39, 41, 42

ExtJS Application framework to build interactive web applications written in JavaScript.
5

Factual Locality The spatial and temporal scope of resources is held as narrow as pos-
sible. 24, 31, 34, 38, 39

FAP Fundamental Architectural Principles. 15

Grunt An ant like task runner written in JavaScript. 82

Headless Testing Common method to test the substructure of a user interface. The
visual components are removed from the application and tests are run on model
and controller components only. 6, 30, 31, 42, 86, 90, 93

HMVC Component architecture, where multiple MVC-triads are stacked on top of each
other to represent the hierarchical character of a user interface. 3

HTML Hypertext Markup Language. 5, 29, 52

IDE Application providing the necessary tools for computer programmers to write soft-
ware. 63

Inversion of Control Programming technique that changes the control flow. Usually
the control flow is determined by the objects that are statically linked together at
compile-time. But if inversion of control is used then this decision is postponed
to run-time. Example: Objects register callback functions at run-time, which are
called when specific events occur. 34, 55

Java A cross-platform programming language that is concurrent and object-oriented.
74

JavaScript JavaScript is an interpreted programming language, formerly only used on
the client side, in browsers. Today with NodeJS also server side applications can
be written. 74, 76, 82, 84

jQuery A client-side JavaScript library simplifying the manipulation of and interaction
with HTML. 29

jQuery Markup jQuery Markup is a jQuery plug-in for assembling, pre-compiling, ex-
panding and then DOM-injecting HTML markup code fragments based on plain
HTML or an arbitrary template language. 29

jQuery UI A JavaScript library providing low-level abstraction of interactions, anima-
tions and widgets using HTML. 5
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Logical Separation Separation of concerns between the components of a software so-
lution. 7, 23, 42, 46, 54, 57, 59

Loose Coupling Loose coupling in communication and referencing between software
components. 30, 31, 36, 38, 59, 90

LTL Modal temporal logic which provides the ability to set up modalities that refer to
time. 18–20

MagicSearchTool Tool to administrate card decks (http://magicsearchtool.com/). 41

maintainability The ability to change the system to deal with new technology or to fix
defects. [BD04] p.160. 42, 93

Midas An SPA for the visualization of energy consumption for retailer chains. 40, 44,
52, 61

MVC A pattern in software development used to structure a complex concern into a
data, presentation and controlling component. 2–6

MVC/CT Model View Controller on a Component Tree. 76

MVP Model View Presenter. 5

NodeJS JavaScript run-time environment built on Google Chromes V8 engine. 74, 76,
84

NPM Module manager for NodeJS, providing capability to install and maintain pack-
ages used in NodeJS applications. 84

Overall Simplicity All design aspects of a solution are as less astonishing and as much
esoteric as necessary. 31, 34

P1 The msg systems ag internal solution for logging working hours. 48, 57

PAC Similar to the MVC pattern, with the addition that it is inherent hierarchically
structured by piling PAC agents up. It serves on a higher level of abstraction
than MVC. 3–5

PAC agent The Presentation-Abstraction-Control instances within a PAC architecture.
3

PEG Grammar to describe a formal language by providing a set of rules to recognize
strings of that language. It is closely related to top-down parsing languages. 82

PEG.js Implementation of an efficient JavaScript parser generator for PEG grammars
(http://pegjs.majda.cz/). 82

ROI Return on investment. 86
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Run-time reflection Architectural pattern which is used for run-time analysis of a soft-
ware system. It consists of four layers: Logging, monitoring, diagnosis and the
mitigation layer. The logging layer is the information extraction point, to gather
data from an application. This data is then processed by the monitoring and di-
agnosis layer and finally used by the mitigation layer to influence the run of the
software. 20

Smalltalk-80 Object-oriented programming language designed by the Learning Re-
search Group of Xerox PARC. 6

SPA Single-Page applications are characterized by the fact, that all resources neces-
sary for their execution are retrieved at the initial page load. The are used to
convey the user experience of a desktop application. 2, 23, 76

Strong Cohesion Strong relationship between functionalities within a single solution
component. 38, 39

Structural Modularity Splitting of a solution into manageable structural components.
46

transpiler In contrast to a compiler, which usually translates higher level program-
ming languages to lower level ones, a transpiler sticks to the same level. It can
transform from one programming language to another or perform source code
rewriting. 74

UI A User Interface (UI) is a mask presented to the user in order to enable interaction
with a computer. 4–7, 9, 24, 25

UI Toolkit A toolbox providing an abstraction of the technology used to draw controls
and basic User Interface elements. 23, 29, 30, 41, 87, 90

UICA User Interface Component Architecture. 37, 38

user interface element Visual unit in the composition making up the UI. 24, 32

W3C World Wide Web Consortium (W3C) is a consortium to standardize the world
wide web. 29

WebSocket WebSocket is a full-duplex communication protocol over a TCP connection.
It is intended to close the gap of server to client communication. 74–76, 82
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B. Code Snippets/Appendix

1 peephole-constraint view_trait {
2 rationale {
3 The only points, where the component system touches the UI Toolkit
4 are the view components. These components are used to
5 render everything, from the topmost dialogs of the application
6 down to layout components that combine several nested views
7 into one comprehensive view.
8 }
9 condition {
10 sourceType == "V"
11 && source == origin
12 }
13
14 peephole-constraint observations {
15 rationale {
16 Views must only access their underlying presentation
17 models through calling observe or value onto themselves.
18 }
19 condition {
20 operation == "observe" ||
21 operation == "value"
22 }
23 result PASS
24 }
25 peephole-constraint sockets {
26 rationale {
27 Views may provide sockets that other views can plug
28 themselves into.
29 }
30 condition {
31 operation == "socket"
32 }
33 result PASS
34 }
35 peephole-constraint plugin {
36 rationale {
37 Views can use sockets of underlying views to embed
38 themselves into them.
39 }
40 condition {
41 operation == "plug"
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42 }
43 result PASS
44 }
45 }

Listing B.1: Constraint of the View Component Trait (4.1)

1 peephole-constraint model_trait {
2 rationale {
3 We have several possibilities to store data within an
4 application. We can use globally or locally scoped variables,
5 member variables of component instances or outsource it
6 to another storage layer. But when we want to make the
7 data available within the Component Tree, which means that we
8 can observe (2.3) and manipulate (2.2)
9 it through component systems API, we have to
10 declare a model (2.2) and pull the required data into it.
11 In general, the model trait should be used whenever a
12 component holds any kind of data, listed in the introduction
13 of Chapter (4.2).
14 }
15 condition {
16 sourceType == "M"
17 && source == origin
18 }
19
20 peephole-constraint observations {
21 rationale {
22 The Model can use observe and value to perform its
23 presentation logic and of course it has to define
24 the model via the corresponding API method first.
25 }
26 condition {
27 operation == "model" ||
28 operation == "observe" ||
29 operation == "value"
30 }
31 result PASS
32 }
33 }

Listing B.2: Constraint of the Model Component Trait (4.2)

1 peephole-constraint controller_trait {
2 rationale {
3 A component with the controller trait is in
4 most cases both, interface to the rest of
5 the Component Tree and coordinator for its
6 sub-tree (2.3).
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7 }
8 condition {
9 sourceType == "C"
10 }
11
12 peephole-constraint managing {
13 rationale {
14 The controller publishes events to and registers
15 services for the rest of the application. It
16 subscribes to events within its sub-tree for
17 presentation actioning.
18 }
19 condition {
20 source == origin &&
21 (operation == "publish" ||
22 operation == "subscribe" ||
23 operation == "register")
24 }
25
26 result PASS
27 }
28
29 peephole-constraint model-com {
30 rationale {
31 A controller has to read and write data to its
32 child model. Additionally it observes model
33 members to react on changes.
34 }
35 condition {
36 originType == "M" &&
37 distance(source, origin) > 0 &&
38 operation == "value" ||
39 operation == "observe"
40 }
41
42 result PASS
43 }
44
45 peephole-constraint service-com {
46 rationale {
47 Each controller can perform calls to retrieve
48 necessary information from a service component.
49 It is also valid to perform calls on any child
50 controllers.
51 }
52 condition {
53 operation == "call" &&
54 (originType == "S" ||
55 (distance(source, origin) > 0 &&
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56 originType == "C"))
57 }
58
59 result PASS
60 }
61 }
62
63 peephole-constraint observations {
64 rationale {
65 The Model can use observe and value to perform its
66 presentation logic and of course it has to define
67 the model via the corresponding API method first.
68 }
69 condition {
70 operation == "model" ||
71 operation == "observe" ||
72 operation == "value"
73 }
74 result PASS
75 }
76 }

Listing B.3: Constraint of the Controller Component Trait (4.3)

1 peephole-constraint lean_widget {
2 rationale {
3 The pattern provides a connection between the UI Toolkit
4 domain and the component system. It focuses on Loose Coupling
5 between the view and the underlying structure to enable
6 Headless Testing while simultaneously providing an
7 abstraction of the deployed UI Toolkit for easy
8 exchangeability.
9 }
10 condition {
11 sourceType == "V"
12 }
13
14 peephole-constraint self {
15 condition {
16 source == origin
17 }
18
19 peephole-constraint model-com {
20 rationale {
21 Views must only access their underlying presentation
22 models through calling observe, value or property
23 onto themselves.
24 }
25 condition {
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26 operation == "observe" || operation == "property" ||
27 operation == "value"
28 }
29 result PASS
30 }
31
32 peephole-constraint struct-com {
33 rationale {
34 Views are allowed to plug themselves into their
35 environment.
36 }
37 condition {
38 operation == "plug"
39 }
40 result PASS
41 }
42 }
43 }

Listing B.4: Constraint of Pattern 1: Lean Widget (5.1)

1 peephole-constraint shared_model_component {
2 rationale {
3 Via providing a way to map data slots of a model seamlessly
4 to the storage required by overlying components, this pattern
5 offers the possibility to merge a bunch of tiny models into
6 one model component. This reduces the implementation effort,
7 the run-time overhead and the complexity of the application.
8 }
9 condition {
10 sourceType == "M"
11 }
12
13 peephole-constraint self {
14 rationale {
15 The model needs to observe itself for configuration
16 changes of the adjacent view components and provide
17 scoped properties for the dynamic bindings lookup. Of
18 course it also has to define the model itself.
19 }
20
21 condition {
22 source == origin
23 && (operation == "observe" || operation == "property"
24 || operation == "model")
25 }
26
27 result PASS
28 }
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29 }

Listing B.5: Constraint of Pattern 2: Shared Model (5.2)

1 peephole-constraint subtree_information_delivery {
2 rationale {
3 The Component Tree allows us to have communication bubbling
4 up from each component. On its way, an event can notify
5 observers and trigger actions as well as deliver data.
6 But sometimes, we are faced with the necessity of sending
7 data from one component downwards the hierarchy to child
8 components or whole sub-trees. At this point, this
9 pattern steps in by providing a clean and sophisticated
10 way to relay information.
11 }
12
13 peephole-constraint spreading_event {
14 rationale {
15 The controller is allowed to publish the spreading
16 event upon itself. The receiving component should
17 also be a controller since it is the interface to
18 the rest of the Component Tree.
19 }
20
21 condition {
22 sourceType == "C"
23 && source == origin
24 && (operation == "publish" ||
25 operation == "subscribe")
26 && parameters.spreading == true
27 }
28
29 result PASS
30 }
31
32 peephole-constraint shared_member_model {
33 rationale {
34 The model has to define itself through the model method.
35 Presentation logic is triggered by observing and
36 manipulating its members. Furthermore, the scoping is
37 done using the property method.
38 }
39
40 condition {
41 sourceType == "M"
42 && source == origin
43 && (operation == "property" ||
44 operation == "value" ||
45 operation == "observe" ||
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46 operation == "model")
47 }
48
49 result PASS
50 }
51
52 peephole-constraint shared_member_receiver {
53 rationale {
54 The receiving component should be a controller as it is
55 the interface to the rest of the Component Tree. The property
56 method is used to lookup the model members that can be
57 observed and manipulated.
58 }
59
60 condition {
61 sourceType == "C"
62 && source == origin
63 && (operation == "property" ||
64 operation == "value" ||
65 operation == "observe")
66 }
67
68 result PASS
69 }
70 }

Listing B.6: Constraint of Pattern 3: Sub-tree Information Delivery (5.3)

1 peephole-constraint rich_widget {
2 rationale {
3 Keeping all data and its logic together in one place
4 reduces complexity and improves maintainability
5 and understandability of the source code. Thus,
6 the implementation of a dedicated model component for
7 a rather extensive widget is advised. Of course
8 Headless Testing is well supported since the
9 view can be omitted and testing is performed on the
10 sole model component.
11 }
12 peephole-constraint view {
13 condition {
14 sourceType == "V"
15 }
16
17 peephole-constraint self {
18 condition {
19 source == origin
20 }
21
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22 peephole-constraint model-com {
23 rationale {
24 Views must only access their underlying presentation
25 models through calling observe, value or property
26 onto themselves.
27 }
28 condition {
29 operation == "observe" || operation == "property" ||
30 operation == "value"
31 }
32 result PASS
33 }
34
35 peephole-constraint struct-com {
36 rationale {
37 Views are allowed to plug themselves into their
38 environment.
39 }
40 condition {
41 operation == "plug"
42 }
43 result PASS
44 }
45 }
46 }
47
48 peephole-constraint model {
49 condition {
50 sourceType == "M"
51 }
52
53 peephole-constraint self {
54 condition {
55 source == origin
56 }
57
58 peephole-constraint pres-logic {
59 rationale {
60 Models are allowed to trigger their presentation logic
61 and modify their members by using the observe and value
62 method onto themselves.
63 }
64 condition {
65 operation == "observe" || operation == "value"
66 }
67 result PASS
68 }
69 }
70 }

98



71 }

Listing B.7: Constraint of Pattern 4: Rich Widget (5.4)

1 peephole-constraint managing_widget {
2 rationale {
3 Imagine a layout component L and an underlying component U.
4 U plans to embed several components inside the layout provided
5 by L. One way would be to issue create calls directly from U
6 upon L to instantiate the necessary components. If presentation
7 logic (2.3) is necessary for the layout, e.g. a tab layout,
8 where only one tab can be visible at a time, then component U
9 has to take care of the states of each created component, although
10 it does not know how the layout is build up. Hence the best
11 practice is to shift that responsibility to component L which
12 creates child components and is able to manage them, as a result.
13 }
14 condition {
15 sourceType == "C"
16 && (operation == "state" || operation == "call"
17 || operation == "property")
18 && distance(source, origin) == 3
19 }
20
21 result PASS
22 }

Listing B.8: Constraint of Pattern 5: Managing Widget (5.5)

1 peephole-constraint non_managing_widget {
2 rationale {
3 It is not always necessary to have a full blown MVC triad
4 (2.3) taking care of a simple layout job. To reduce
5 complexity, the model and controller components are omitted,
6 boiling the MVC triad down to a single view component.
7 }
8 peephole-constraint socket-creation {
9 rationale {
10 The view used for the static layout has to provide the
11 necessary sockets for possible child components.
12 }
13 condition {
14 sourceType == "V"
15 && source == origin
16 && operation == "socket"
17 }
18 result PASS
19 }
20
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21 peephole-constraint coordinate-children {
22 rationale {
23 Optionally, controller components can create links to direct
24 overlying views into the correct positions.
25 }
26 condition {
27 sourceType == "C"
28 && originType == "V"
29 && operation == "link"
30 }
31
32 result PASS
33 }
34 }

Listing B.9: Constraint of Pattern 6: Non-Managing Widget (5.6)
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