

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

Institut für Software & Systems Engineering
Universitätsstraße 6a D-86159 Augsburg

Holistic Approach for a
Separable, Reactive, Model-Agnostic

View Data Binding

Johannes Rummel

Master’s Thesis in the Elite Graduate Program:
Software Engineering

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

Institut für Software & Systems Engineering
Universitätsstraße 6a D-86135 Augsburg

Holistic Approach for a
Separable, Reactive, Model-Agnostic

View Data Binding

Matriculation number: 1277688
Started: May 15th, 2014
Finished: November 15th, 2014
First assessor: Prof. Dr. Alexander Knapp
Second assessor: Prof. Dr. Bernhard Bauer
Supervisors: Dipl.-Inf. Univ. Ralf S. Engelschall

Jochen Hoertreiter

ERKLÄRUNG

Hiermit versichere ich, dass ich diese Masterarbeit selbstständig verfasst habe. Ich
habe dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

I, hereby certify that this thesis has been written by me, that it is the record of work
carried out by me and that I have not used anything else but the indicated sources
and tools.

München, den 24. Oktober 2014 Johannes Rummel

Abstract

CONTEXT User interfaces in rich clients today contain complex logic and need to be
performant, while offering powerful functionality. Their development becomes more
complex and there is a great need to simplify recurring tasks that require more and
more boilerplate code. One such task is synchronizing values between the view mask
and a presentation model. It arises in popular architectural patterns like Model-View-
ViewModel or Model-View-Controller.

MOTIVATION The initial construction of the view mask using the presentation model
is tedious and produces unmaintainable code. Writing logic that reflects every possible
change in the presentation model or the view mask is even worse and error-prone. A
common inefficient workaround is to rerender the whole view mask again after every
change to the presentation model. Solutions addressing this problem lack flexibility,
efficiency or architectural cleanliness. Some do not concentrate on view data binding
only.

APPROACH We define the smallest set of concepts and their semantics for achiev-
ing a powerful view data binding. Our binding is agnostic to the presentation model
implementation and follows the reactive programming paradigm. That means, it is
scalable, event-driven and responsive. To encourage the important architecture prin-
ciple of Separation of Concerns, we allow to define the binding separately. We further
permit both declarative and imperative specification of the binding inside the view
mask itself or in its corresponding rendering code. We define a Domain-Specific Lan-
guage and use it for all approaches. To take this holistic approach even further, we
design our architecture to be extensible and pluggable.

CHALLENGE Especially in the context of web applications, we need to find efficient
algorithms and data structures that realize view data binding with surgical Document
Object Model (DOM) updates. The data and event binding need to hide their complex-
ity from the developer to reduce the amount of boilerplate code. We want a powerful
syntax that is easy to understand and that is, in spite of its compactness, still intuitive.

SOLUTION We compare existing solutions to our approach and present an architec-
ture that focuses on modularity and adaptability. We test whether our concepts can be
implemented by presenting BindingJS1, a JavaScript library. We evaluate it by compar-
ing it with existing solutions and by incorporating it into a real world web application.

1http://www.bindingjs.org/

http://www.bindingjs.org/

Contents

1. Big Picture 1
1.1. Evolution of the Web . 1
1.2. Rich Web Clients . 2

2. The View Data Binding Problem 5
2.1. Architectural Patterns in Web Applications 5

2.1.1. Model-View-Controller (MVC) . 6
2.1.2. Model-View-ViewModel (MVVM) . 8
2.1.3. Model-View-Controller / Component Tree (MVC/CT) 9

2.2. Manual View Data Binding . 11
2.2.1. TodoMVC . 12
2.2.2. msg TimeSheet . 14

2.3. Reactive Programming . 16
2.4. Motivation . 18

3. Existing Solutions for View Data Binding 21
3.1. Solutions targeting Desktop and Thin Web Clients 21

3.1.1. Eclipse Rich Client Platform (RCP) . 21
3.1.2. JavaServer Faces (JSF) . 22
3.1.3. Windows Presentation Foundation (WPF) 24

3.2. Libraries for Rich Web Clients . 26
3.2.1. Facebook React . 27
3.2.2. Ractive.js . 29
3.2.3. KnockoutJS . 30
3.2.4. Other Libraries . 31

3.3. Comparison of Rich Web Client Libraries . 33
3.3.1. Methodology . 33
3.3.2. Results and Conclusion . 34

4. Concept and View Data Binding Ontology 35

5. View Data Binding Concepts 39
5.1. Core Binding Concepts . 39

5.1.1. Selection . 39
5.1.2. Binding . 42

5.1.2.1. Adapter . 44
5.1.2.2. Connector . 46
5.1.2.3. Binding Scope . 54

5.1.3. Iteration . 56

Contents

5.2. Core Structure Concepts . 63
5.2.1. Identification . 63
5.2.2. Insertion . 64

5.3. Convenience Binding Concepts . 66
5.3.1. Two-Way Binding . 66
5.3.2. One-Time Binding . 67
5.3.3. Resource Sequence . 69
5.3.4. Initiator . 72
5.3.5. Parameter . 74
5.3.6. Expression . 77

5.4. Convenience Structure Concepts . 83
5.4.1. Template . 83

5.5. Domain Specific Language . 84

6. Implementation, BindingJS 87
6.1. Architecture . 87
6.2. Application User Interface . 92

6.2.1. Public API . 92
6.2.2. Binding API . 94
6.2.3. Socket API . 99
6.2.4. Plugin API . 101

6.3. Algorithms . 105
6.3.1. Repositories . 105
6.3.2. Binding Scope . 105
6.3.3. Parser . 106
6.3.4. Preprocessor . 108
6.3.5. Iterator . 121
6.3.6. Propagator . 126
6.3.7. Sockets . 130

7. Evaluation, BindingJS 131
7.1. Comparison with other Rich Web Client Libraries 131
7.2. Employment in Applications . 137

7.2.1. TodoMVC . 138
7.2.2. msg TimeSheet . 142

8. Conclusion and Future Work 143

A. Appendix 147
A.1. Comparison of Rich Web Client Libraries . 147

A.1.1. Criteria Catalog . 147
A.1.2. Evaluation . 153
A.1.3. List of Libraries . 160

A.2. Code Listings . 162
A.3. Figures . 178

B. Glossary 181

C. Bibliography 185

List of Figures

1.1. Teasing Example — evolutionoftheweb.com 1
1.2. 7 Layer Architecture (Excerpt) [Enga] . 3

2.1. Typical Collaboration of MVC Components 5
2.2. View Data Binding with Knockout . 9
2.3. Artificial Example of Reusing a Login Component in ComponentJS 10
2.4. TodoMVC Implementation . 13
2.5. msg TimeSheet, Main View . 15
2.6. Separation of Concerns Introduced by Cascading Style Sheets 18

3.1. Eclipse IDE, an RCP Application . 22
3.2. HTML, Rendered by JSF . 24
3.3. View Data Binding Flows in Windows Presentation Foundation 25
3.4. Facebook React Comment Box — Component Structure 27
3.5. Ractive.js Item List . 29

4.1. Concept Ontology . 35
4.2. View Data Binding Ontology . 37

5.1. Typical Data Flow through Adapter and Connectors 50
5.4. Annotated Binding Specification . 86

6.1. BindingJS, Context Diagram . 88
6.2. BindingJS, Component Diagram . 89
6.3. BindingJS Engine, Component Diagram . 89
6.4. BindingJS API . 93
6.5. State Diagram, View Data Binding . 96
6.6. Reference, Class Diagram . 104
6.7. Repositories, Class Diagram . 105
6.8. Binding Scope, Class Diagram . 106
6.9. Preprocessor, Overview . 108
6.10. Plain Iteration, Class Diagram . 113
6.11. Plain Iteration Tree, Object Diagram . 116
6.12. Expanded Iteration, Class Diagram . 117
6.13. Plain together with Expanded Iteration Tree 117
6.14. Expanded Iteration Tree, Object Diagram 120
6.15. Iteration Instance, Class Diagram . 121
6.16. Iteration Components, Simplified . 124
6.17. Influences of Bindings as Graph . 129

A.1. WPF Application Demonstrating Data Binding 178
A.2. Selenium IDE Test Case Execution . 179

http://www.evolutionoftheweb.com

1. Big Picture

1.1. Evolution of the Web

Figure 1.1.: Teasing Example — evolutionoftheweb.com

In spite of its short history, the Internet has come a long way. Around twenty years
ago, static web pages were dominant. To provide a more interactive experience, devel-
opers later augmented them with pieces of JavaScript code. More ornate components
however required users to manually install plug-ins like Adobe Flash or Microsoft Sil-
verlight. Fortunately their most used features like embedded videos are now slowly
replaced by HTML 5 [Har]. To make user interfaces more appealing, Cascading Style
Sheets (CSS) became an important part of every web developer’s toolbox. A more de-
tailed overview can be found at evolutionoftheweb.com, which is shown in figure 1.1
and in turn is a very good example of what is currently possible.
These fundamentals were then adopted to build sophisticated widget and JavaScript

libraries, e.g.,dojo or jQuery. Nowadays we see powerful frameworks such as Angu-
larJS, Backbone.js and even whole programming languages like Dart. They all ad-
dress the inability of native web technologies to support extensive application logic.
JavaScript alone also does not encourage using proven architectural patterns, which
become more and more important with increasing amounts of code.
The current trend is for web browsers to run powerful applications instead of only

displaying content retrieved from a server. Some examples of this include popular
web sites such as facebook, YouTube or the various google products like Google Maps,
Google Docs or Google Hangouts. Google even goes so far as to market an operating

1

http://www.evolutionoftheweb.com
http://www.evolutionoftheweb.com

1. Big Picture

system, called Chrome OS, whose main purpose is just to run a web browser [Pic].
The idea of putting different amounts of the application logic onto the client is not

new. In the era of mainframes around 1980, many terminals that only displayed data
accessed the central system as a client. This way it was easy to update the application
and security could be handled easily. When personal computers became increasingly
popular it was no longer reasonable to leave their processing power unused. This led
to applications that executed almost all the application logic and needed the server
only as a database. In contrast to this, a web browser again is like a terminal that
displays data received from a web server [Sha]. There seems to be a cycle and what we
identified as a trend to more powerful web applications earlier implies the beginning
of the next step in that cycle.
There are several reasons why it makes sense to create web pages that do more than

just displaying HTML from the server. About one third of the world’s population goes
online every day [Webi]. A client that performs parts of the work reduces load on the
server and therefore operational cost. Also such a client can in many cases be fully
functional even when lacking a constant Internet connection [Wikia]. This especially
helps the increasing number of people who access the Internet from mobile devices
[Webb].

1.2. Rich Web Clients
The terminology describing a web client who does more than just view rendering is
very unclear and ambiguous. Adjectives like heavy, fat, thick or rich are often falsely
used interchangeably. By identifying different responsibilities of a web client, we clar-
ify what type of client each term defines.
There are numerous classifications of layer based architectures including Nilsson

[Nil02], Fowler [FR10] and Brown Layers [Bro+03]. We focus on the layer architec-
ture presented by Martens [Mar10], who also illustrates how to map other layer clas-
sifications onto his definition. The goal of this architecture is to find the maximum
number of layers so that every web library can be assigned to exactly one layer. As a
result, Martens presents the seven layers shown in figure 1.2 and proves that if their
number were greater there would be libraries that fell into more than one layer.
Martens identifies three different roles, Interaction, Domain and Data. Layers that

appear in the role of Interaction are responsible for interacting with the user of the
application. They display and render the GUI and accept user-triggered events. On
the other hand, layers having the Domain role cover business specific functionality.
The Data role is not relevant for distinguishing the different types of web clients and
is therefore not further considered here.
The three Interaction layers are Technical, Abstract and Domain Interaction. The

Technical Interaction layer is responsible for displaying and rendering the view mask.
In a web context this layer is usually implemented by the HTML rendering engine of
the web browser and requires no further development efforts. Abstract Interaction
deals with view components, so-called Widgets, and makes building user interfaces
easier. jQuery UI or dojo are examples of libraries on this layer in web development.
Finally, the Domain Interaction layer links Interaction and Domain by observing and
controlling the Abstract Interaction layer. ComponentJS offers an implementation for
this layer in web applications.

2

1.2. Rich Web Clients

Figure 1.2.: 7 Layer Architecture (Excerpt) [Enga]

Beneath these resides the layer Domain Service, which uses and stores data in the
Domain Data layer. These two layers make an application unique and contain the
specific functionality required to fulfill its purpose. Of course, these layers cannot be
covered by libraries; a high level of abstraction is desired elsewhere and the most time
for implementing functionality should be spent here.
Having an abstract understanding of how a web application is structured, it is now

clear how to define what the various types of web clients are. They are defined by
the distribution of layers to the client and the server. A Thin Client only consists of
the Technical Interaction layer, while a Rich Client provides the whole Interaction role
including the Abstract and Domain Interaction layer. A Fat, Heavy, or Thick Client
on the other hand includes even more business logic and comes with all Domain role
layers.

3

2. The View Data Binding Problem
The topic of this thesis is particularly specific and mostly invisible to someone not
deeply involved in web development. View data binding generally means that two
properties are synchronized, so that they always have the same value. While this
theoretically is possible in any context, it is most important in architectural patterns,
where presentation of data is separated from storage of that data. To get a better
understanding of the structure of applications that our approach mainly addresses we
start this chapter with an introduction to such architectural patterns.
These patterns require that the same or similar data is held in multiple locations.

We show what problems arise when the binding that synchronizes these different data
sources is implemented manually, without automation. A desirable way of dealing with
view data binding resembles the ideas of Reactive Programming. We therefore explain
the meaning of this before summarizing our motivation to work on this topic and what
problems we want to solve with our approach.

2.1. Architectural Patterns in Web Applications
It is important to know about the most popular patterns of the Model-View-* fam-
ily [SW] in order to understand why view data binding is an issue. There are many
frameworks implementing these patterns, and recognizing how we are compatible to
them first requires the knowledge presented in this section. There are many different
interpretations and definitions of Model-View-ViewModel and especially Model-View-
Controller. We focus on explaining their most important concepts, while leaving out
details, which may vary.

Figure 2.1.: Typical Collaboration of MVC Components

5

2. The View Data Binding Problem

2.1.1. Model-View-Controller (MVC)

Model-View-Controller (MVC) is an architectural pattern that is used to implement
user interfaces. When it was invented is unclear, but it must have been around the
1970s and approximately ten years prior to the publication of the first significant paper
about MVC in 1988 [Mod]. Although this makes the pattern seem antique, it played
an important role throughout the history of application development and continues
to have a big part in modern web development. MVC offers a way to separate the
responsibilities of presenting and managing domain information by decoupling them
into three components.

Model Encapsulates the internal representation of information, related to a specific
problem domain. It may also contain business rules and logic on how to manipu-
late and access its data [Webr].

View Is responsible for presenting model data to the user. It knows how to draw itself
and is able to respond to user actions [Webs].

Controller Acts as an interface to the application for the user [Grea]. It may also per-
form setup and coordinating tasks for an application and manage the life cycles
of other objects [Webs].

Figure 2.1 illustrates two different interpretations of the interaction between these
three components. The arrows drawn in black indicate that the model is responsible
for updating the view [Wikic]. The variant with arrows in red completely decouples
view and model and routes all change notifications through the controller [Webs].
In web environments, the implementations vary in the distribution of the compo-

nents to server and client. In thin client applications, such as a Java EE web applica-
tion, all components run on the server. When a call to the controller is triggered, for
instance by a click of the user on a Hyperlink, the request is executed remotely and
a rendered view mask is returned. In contrast, a rich or fat client architecture moves
more components onto the client. To illustrate how this is implemented we want to
use Backbone.js1, a JavaScript framework, to present a simple example.
There is an ongoing discussion as to whether Backbone.js qualifies as anMVC frame-

work, since it has no characteristics of a dedicated controller. Some parts of the con-
troller’s functionality are placed in the view and some in a component called router,
which is not explained here. It therefore seems clear that the framework is not a pure
implementation of MVC. It should rather be classified as a member of a more general
Model-View-* family, since it adopts principles from MVC, MVP and MVVM (see sec-
tion 2.1.2) [Bai]. Nevertheless, Backbone.js is close to MVC and it serves as a useful
example in this section, especially considering its popularity.
Backbone.js provides an event mechanism that notifies view and model instances

about changes to their associated counterparts. Models are defined by inheriting from
a class provided by the framework as in listing 2.1. In addition, they are allowed to
contain additional functionality for representing business logic like the prettyPrint
function in line 6.

1http://backbonejs.org/

6

http://backbonejs.org/

2.1. Architectural Patterns in Web Applications

1 var Thesis = Backbone.Model.extend({
2 defaults: {
3 author: ’’,
4 year: 1970
5 }
6 prettyPrint: function () {
7 return this.get(’author’) + ’ in ’ + this.get(’year’);
8 }
9 });
10
11 var holisticApproach = new Thesis({
12 author: ’Rummel, Johannes’,
13 year: 2014
14 });

Listing 2.1: Defining and Instantiating a Model Component in Backbone.js

A key benefit of favoring the framework over definingmodels with plain JSON objects
is that these managed components support the observer pattern. Listing 2.2 shows
how easy it is to register changes by using this technique.
Whenever the author attribute of holisticApproach is changed, Backbone.js will

notify the callback function passed in as the second argument. Within this callback
the change is usually reflected to the view component to update the displayed author
accordingly. This already creates a simple one-way view data binding.

1 holisticApproach.on(’change:author’, function () {
2 updateView();
3 });

Listing 2.2: Register Change Listener in Backbone.js

Listing 2.3 shows how view components are defined in a similar fashion by extending
a framework class. A related change listener as in listing 2.2 is registered in line 4 as
soon as the view is initialized. Any time a change to the associated model takes place,
render is executed. It is common but inefficient to render the view again after every
change, although it may not seem relevant in this minimal example.

1 var ThesisView = Backbone.View.extend({
2 tagName: ’div’,
3 initialize: function () {
4 this.listenTo(this.model, ’change’, this.render);
5 },
6 render: function () {
7 // Another library like jQuery is typically used here
8 this.$el.html(this.model.prettyprint());
9 }
10 });

Listing 2.3: Defining a View Component in Backbone.js

7

2. The View Data Binding Problem

2.1.2. Model-View-ViewModel (MVVM)
“GUIs consist of widgets that contain the state of the GUI screen. Leaving
the state of the GUI in widgets makes it harder to get at this state, since
that involves manipulating widget APIs, and also encourages putting
presentation behavior in the view class.” — Martin Fowler [Fow]

Model-View-ViewModel (MVVM) is a variant of MVC and a specialization of the de-
sign pattern presentation model [Fow]. MVVM abstracts view attributes into a view
model, which leads to better maintainability, especially if the view needs to be changed
[Webw]. Keeping values synchronized between view and view model, however, re-
quires view data binding. Although it could be created manually, a binding library is
usually employed to facilitate development [MSDN] [Lik].

Model Consists of data that are stored by the application and independent of the user
interface [Webq]. In MVVM, however, the model should contain the whole busi-
ness logic [Webt].

View Contains all graphical elements that represent the state of the view model. It
also passes user input to the view model and requires only a small amount of
code if a suitable binding library is used [Webq].

ViewModel Comprises logic to convert data into a format that is suitable to be dis-
played to the user [Smi]. It mediates between view and model, but it doesn’t
have to know about the view. This makes it possible to drastically change the
view if necessary [Webq].

This time we use Knockout2, a standalone JavaScript implementation of MVVM, to
demonstrate, how MVVM is used in web development.

1 <p>First name: <input data-bind="value: firstName" /></p>
2 <p>Last name: <input data-bind="value: lastName" /></p>
3 <h2>Hello, !</h2>

Listing 2.4: Defining a View Component in Knockout.js [Wikib]

The view component in listing 2.4 is defined with HTML. The input fields for the first
and last name are annotated with HTML 5 custom data attributes [Bew], specifying a
binding declaratively. In lines 1 and 2 it signifies that the input’s value and the model
attributes firstName or lastName respectively should automatically be synchronized.

1 function ViewModel() {
2 this.firstName = ko.observable("Johannes")
3 this.lastName = ko.observable("Rummel")
4 this.fullName = ko.computed(function () {
5 return this.firstName() + " " + this.lastName()
6 }, this)}
7 ko.applyBindings(new ViewModel())

Listing 2.5: Defining a ViewModel Component in Knockout.js [Wikib]

2http://knockoutjs.com/

8

http://knockoutjs.com/

2.1. Architectural Patterns in Web Applications

In this simple example there is no separate model along with the viewmodel from
listing 2.5. Apart from storing first and last name in lines 2 and 3, it also concatenates
them to provide an additional attribute fullName in line 4. fullName is updated as soon
as either firstName or lastName changes. Since fullName is bound to the span’s text
from listing 2.4 in line 3, this application will instantly display the concatenated name
to the user as soon as he or she types it in. To get a better idea of what this looks like,
figure 2.2 shows the code rendered in a web browser.

Figure 2.2.: View Data Binding with Knockout

2.1.3. Model-View-Controller / Component Tree (MVC/CT)

Model-View-Controller / Component Tree (MVC/CT) [Engb] is an architectural pattern
that is related to Presentation-Abstraction-Control (PAC) [Cou87] and combines as-
pects of MVC and MVVM. It is similar to PAC, since both resemble the inherent hierar-
chical nature of user interfaces by organizing their components into a tree structure.
Every component that is a node of that tree is structured using MVC, but still differ-
entiates between a business and presentation model as in MVVM.
A reference architecture exists for MVC/CT [Engc] called user interface component

architecture. It shows which aspects can be and as part of what component,i.e. Model,
View or Controller, they have to be implemented. It also compares this distribution to
other architectural approaches and thereby clarifies the difference between MVC/CT
and PAC. PAC places no logic into the view component apart from mask rendering,
while MVC/CT is intended to put all view data binding related code there, which in
contrast is implemented as part of the controller in PAC.
MVC/CT uses a tree of user interface elements. It serves as a communication in-

frastructure between those elements and has the benefit of a simple event propaga-
tion mechanism [Vaa13]. Among many other advantages, splitting user interfaces into
manageable chunks also fosters reusability and maintainability of single components.
Figure 2.3 shows a rather artificial example of this by instantiating a login widget
multiple times inside one parent dialog3.

3http://componentjs.com/demo/

9

http://componentjs.com/demo/

2. The View Data Binding Problem

Figure 2.3.: Artificial Example of Reusing a Login Component in ComponentJS

Types of View Data Binding

It is of special interest for this work that the reference architecture differentiates be-
tween four types of view data binding [Engc].

Data Binding Synchronizes data that are meant to be displayed to the user. The bind-
ing may be two-directional, so that the data value can be either changed by the
user or programmatically. In figure 2.3 all realm, username and password values
are data bound to the model.

State Binding Handles binding of states, meaning data that have finitely many val-
ues, including Boolean or enumeration values. Examples of state binding include
whether buttons are active or validation results. State bindings in figure 2.3 in-
clude the login button state or the validity of the password.

Event Binding An event in this context means an action triggered by the user. Binding
to an event in ComponentJS sets a Boolean model value, a so-called event value,
to true whenever the event is fired. Resetting this value to false is then handled
by the framework. Examples of this in figure 2.3 are clicking the login button or
selecting another realm.

Command Binding Commands are specific events whose directions are opposite to
those described previously. Commands propagate from model to view. A com-
mand binding will trigger a change to the view whenever a Boolean model at-
tribute, a so-called command value, is set to true. The view, which observes this
command value through the command binding reacts to the change and it is set
to false by the framework. In figure 2.3 an example of this is clicking the reset
button on the top right. This will first trigger an event to the model. The con-
troller then sends a command back to the view that it should reset its input fields
to their defaults.

10

2.2. Manual View Data Binding

The differentiation helped us to find many use cases for view data binding. It is also
a good practice to denote the type of a model value as a prefix. This improves the
understandability and maintainability of code, since how the model is used is directly
visible.

ComponentJS

ComponentJS is a JavaScript implementation of MVC/CT and its associated reference
architecture. Since it is widely used at msg systems AG, one of our main goals was to
be compatible with it. Although we want to ensure that our concepts and implemen-
tation are flexible enough to work well with any kind of framework or pattern, being
compatible with ComponentJS shows that our approach is capable of dealing with hi-
erarchical models. In chapter 3 we show that almost all available solutions lack this
feature.

2.2. Manual View Data Binding
In this section we present one of the problems we want to solve with our approach.
Starting off with a very basic example we move on to more complex problems. We
demonstrate, where view data binding occurs and how difficult its implementation
without using automation is. We are using a JavaScript like pseudo code and HTML
throughout these examples, but our approach is not limited to web development and
as you will see in chapter 3 and 5, the problem domain is much larger.
A most basic example, where view data binding comes into play, is a form where the

user is supposed to enter data. To keep it even more simple, there is only a single text
box for the username.

1 <div id="foo">
2 <input id="username" type="text" />
3 </div>

Listing 2.6: HTML Markup — An Introductory Example

In addition to the markup, defined in listing 2.6, a model is required. It stores the
username and is defined with a plain JSON object in listing 2.7.

1 var model = new Model({
2 user: { name: "Johannes" }
3 }

Listing 2.7: Introductory Example: Model

Now a binding between the value of the input text box and the model attribute
user.name needs to be established. We want this binding to be two-directional. First,
if the user enters his or her name, the model attribute is automatically updated. Sec-
ond, if the model attribute is changed programmatically, the value of the text box is
also updated. This means that both values are always equal, no matter which end is
changed. To acquire that functionality without using a binding library, the code shown
in listing 2.8 has to be added.

11

2. The View Data Binding Problem

1 // Executed when page loads
2 function init() {
3 // Updates view if model changes
4 model.user.name.observe(
5 function (newName, oldName) {
6 jQuery("#username").val(newName)
7 })
8
9 // Updates model if view changes
10 jQuery("#username").change(
11 function () {
12 model.user.name = jQuery(this).val()
13 }
14);
15 }

Listing 2.8: Introductory Example: Binding

Lines 4 to 7 register a callback function that is notified whenever user.name in model
changes. It then updates the value displayed to the user in line 6. Analogously, lines
10 to 14 realize the other direction of the binding. They register a callback that sets
the model attribute, whenever the user changes the value inside the text box.
Even though this is a very basic example, the amount of code required is already

significant. If now more input fields were added, the number of lines required to
achieve the same view data binding would increase drastically with a lot of repetition.

2.2.1. TodoMVC
TodoMVC4 is a project whose goal it is to help developers select one of the many
JavaScript frameworks that implement a Model-View-* pattern. Its functionality is
simple, but diverse enough, to cover many typical requirements of web applications.
Since many aspects of TodoMVC require view data binding, it serves as a good ex-
ample to demonstrate the difficulties of implementing them. Figure 2.4 shows one
implementation of TodoMVC. Looking at selected requirements in the specification
[Weba] illustrates where view data binding comes into play.

• Adding or filtering items updates the list of items and the counter of items remain-
ing. This means that there must be code that keeps a collection of items from the
model synchronized with the displayed list of items in the view. An efficient imple-
mentation for this not only requires being able to construct one list item, but also
needs to surgically remove or add items at specific positions without touching
unchanged items.

• Items can be completed or open. This state has to be reflected in the model and
has multiple implications inside the markup. The tick in front of the item and its
text change their color and the text gets struck through. To realize this efficiently
the item that was completed or opened needs to be identified within the collection
of items to prevent manipulating other items unnecessarily.

4http://todomvc.com/

12

http://todomvc.com/

2.2. Manual View Data Binding

• Item texts are editable and their label needs to be updated in the model accord-
ingly. As explained before, this requires a similar logic to identify specific items,
but has to be rewritten again.

• If no items are present, the footer should be hidden. This means that parts of the
mask appear or disappear based on a condition. Thus, the condition needs to be
observed for changes. If the footer is truly removed and not only made invisible,
its markup needs to be stored internally, since otherwise it would be impossible
to display it again later.

Figure 2.4.: TodoMVC Implementation

There is an implementation of TodoMVC, using JavaScript without additional li-
braries or frameworks. By the time of writing, this solution comprises more than 1000
lines of code. However this huge amount of code does only implement an inefficient
solution without the aforementioned surgical updates. Listing A.1 in the appendix
shows a simplified version of code that is responsible for displaying the list of todo
items. It is called whenever an item is added, changed or removed. It shows clearly
that not only the amount of code required is unproportional, but also the responsive-
ness and usability of the application is severely endangered if the number of items
increases.

13

2. The View Data Binding Problem

2.2.2. msg TimeSheet

The last and most complex example is a single page application used at msg systems
AG for tracking working hours. It offers a seamless user interface for desktop and
mobile clients by exploiting the potential of MVC/CT (see section 2.1.3). Only view
modules are exchanged, while reusing all other components for both modes. The ap-
plication is of special importance, since it is used in chapter 7 to evaluate our approach.
Since msg TimeSheet is implemented with ComponentJS, its user interface (UI) is

structured into composites and widgets. These terms both describe UI fragments and
follow a strict ontology.

Composite A Composite is a high-level UI fragment. It can either be a Panel, which
orchestrates multiple contained UI fragments, or a Dialog, which interacts with
the user through contained Widgets [Engd].

Widget A Widget is a mid-level UI fragment. It can either be a Container that
mainly logically groups other UI fragments, a user interacting Control or a non-
interacting Visual, which just displays textual or graphical content [Engd].

Figure 2.5 shows the main view of msg TimeSheet with a spreadsheet of time book-
ings. We select one of the many widgets and examine it more closely. The list widget
is used in various places of the application. For example it is included in figure 2.5 on
the right as a list of the most used entries, making them easier accessible.

1 var listModel = new Model({
2 "data:entryList" : [],
3 "command:render" : false,
4 "event:entrySelected" : false,
5 "event:entryDeleted" : false
6 });
7
8 var entryModel = new Model({
9 "data:id": 0,
10 "data:content": "",
11 "state:disabled": false,
12 });

Listing 2.9: Model of list Widget in msg TimeSheet (Simplified)

Listing 2.9 shows a simplified version of the list model. All attributes are prefixed
with their corresponding type as explained in section 2.1.3.
The apposite markup is shown in listing 2.10. It uses jQueryMarkup to ease its initial

rendering. Places like in lines 4 or 5, where data are plugged in on initialization, are
marked with a double mustache notation. There is also one type of binding that is
invisible inside the markup. The existence of the div element from lines 6 to 8 is
dependent on the value of state:disabled in entryModel.

14

2.2. Manual View Data Binding

Fi
gu
re
2.
5.
:m

sg
Ti
m
eS
he
et
,M

ai
n
Vi
ew

15

2. The View Data Binding Problem

1 <markup id="widget-list">
2 <ul class="widget-list">
3 <markup id="entry">
4 <li class="{{class}}" data-id="{{id}}" title="{{content}}">
5 {{content}}
6 <div class="stateDisabled">
7 <div class="button locked fa fa-lock"></div>
8 </div>
9
10 </markup>
11
12 </markup>

Listing 2.10: View Mask of list Widget in msg TimeSheet (Simplified)

Although jQueryMarkup is used, the code for initially rendering the view component
requiresmore than 50 lines of code. However, this does not include any updates similar
to what we have shown in section 2.2.1. Change operations on the list are realized in
an inefficient way by rendering the whole list again after every change.
msg TimeSheet is a rather big business application, but with around ten composites

and widgets each, its size is not exceptional. Writing the code necessary to equip 20
such components with reactive view binding support is not only daunting due to the
amount of repetition, but also error-prone and inefficient.

2.3. Reactive Programming

We strive for a solution that realizes view data binding in a reactive fashion. To see
what that means, we explain Reactive Programming, which benefits it offers and which
features a reactive application requires.

Data Flows versus Imperative Assignments

At first, Reactive Programming is a paradigm that focuses on expressing static or
dynamic data flows, while hiding the underlying execution model, which automatically
propagates changes to the data [Wikid]. Data flows have different semantics than
assignments that are used in imperative programming. It is mostly difficult to express
reactive data flows in imperative languages without the help of additional libraries.
Consider the simple example from listing 2.11 [Sto]. It keeps track of the temper-

ature in both degrees Celsius and Fahrenheit. In imperative programming updating
celsius in line 5 has no effect on the value of fahrenheit. If the assignment in line
2 however was interpreted as an expression, it would create a relationship between
celsius and fahrenheit, resulting in an automatic update to fahrenheit. Another ex-
ample for such a relationship is well known fromMicrosoft Excel formulas that update
as soon as any referenced cell changes [We].

16

2.3. Reactive Programming

1 var celsius = 10;
2 var fahrenheit = (9/5) * celsius + 32; // = 50
3
4 // Sudden rise in temperature
5 celsius = 30;
6
7 if (fahrenheit == 50) {
8 // fahrenheit did not update, which
9 // is a typical interpretation of line 2
10 // in imperative programming
11 } else if (fahrenheit == 86) {
12 // fahrenheit was updated along
13 // with celsius, which is a reactive
14 // interpretation of line 2
15 }

Listing 2.11: Use Case for Reactive Programming

The Reactive Manifesto

The reactive manifesto5 is a document that wants to raise awareness for the need to
adopt the ideas of reactive programming. It does so by explaining the characteristics
of a reactive application and how to achieve them.

Event-driven Updates need to be propagated asynchronously using events to avoid
blocking the application. Since this implies loose coupling, the implementation
is easier to extend, evolve and maintain [Rm].

Scalable Asynchronous message-passing and the event-driven approach are the pre-
requisites for a scalable application that allows to easily add or remove nodes
[Rm].

Resilient Key to an architecture that is able to recover from errors is the isolation
of components (e.g. by using the bulkhead pattern [McC]) to prevent cascading
failures [Nyg]. This is ensured by the aforementioned event-driven design [Rm].

Responsive This feature is most important to the user. Responsive means that the
application is always ready to handle user input and provide an interactive expe-
rience, while eliminating unnecessary wait times. This is fostered by the event-
driven approach and can be ensured even under the presence of failure by being
resilient [Rm].

5http://www.reactivemanifesto.org/

17

http://www.reactivemanifesto.org/

2. The View Data Binding Problem

2.4. Motivation
All previous sections constitute vital prerequisites for understanding what problems
we deal with and how we want to solve them.

Simplifying View Data Binding
We have shown in section 1.2 that most time for development should be spent as close
as possible to the domain service layer and not on recurring tasks like view data bind-
ing. By demonstrating the various problems that arise if view data binding is imple-
mented manually we have shown that this is currently not the case and a solution
automating view data binding is needed.
In the various examples we gave an impression of how much lengthy boilerplate

code is required to carry out typical view data binding requirements of an application.
Long and repetitive code with a lot of redundancy not only requires an unproportional
amount of time to write, but also poses maintenance difficulties and the danger of
implementation errors.
One especially troublesome programming error involves observers that are used in

view data binding. If they are not cleaned up correctly, memory leaks occur [Hua].
We used TodoMVC and the list widget in msg TimeSheet to show that if collections

are bound, new challenges in complexity arise. It is then often unreasonable to imple-
ment view data binding in such a way that the view is only surgically changed as much
as necessary. Mostly inefficient solutions that do not avoid big updates of the view are
preferred. We want to reduce the amount of code required to implement view data
binding. Also we need to cut down the opportunities to produce errors to a minimum.
In addition, we want to implicitly prevent memory leaks and offer an efficient binding
of collections with surgical updates.

Figure 2.6.: Separation of Concerns Introduced by Cascading Style Sheets

18

2.4. Motivation

Promoting Separation of Concerns
Separation of Concerns is one of the most, if not the most important design principle
in computer science [Mak] [Cor] [Greb]. View data binding is an individual concern,
but currently has no designated habitat. Therefore we want to provide a way to specify
view data binding separately.
Comparable to that are Cascading Style Sheets (CSS), which were invented in the

early years of the internet around 1994 [Lie94]. Prior to them it was common to mix
style and markup information inside HTML, which is now strongly discouraged and
all styling information is put in a separate CSS file as shown in figure 2.6. Similarly
bindings and markup are currently mixed together and that is a violation of Separation
of Concerns. By restoring this principle we further want to increase maintainability
[Greb].

Enabling Flexibility
We presented MVC, MVVM and MVC/CT in sections 2.1.1, 2.1.2 and 2.1.3, which are
all widely used in web development and implemented by many different frameworks
like Backbone.js, Knockout or ComponentJS. We want to be open to and compatible
with all kinds of model implementations, including the hierarchical MVC/CT.
As we show in chapter 3, many frameworks available do not concentrate only on view

data binding and require to structure a whole application according to the framework.
We, however, do not wish to impose such requirements and want to focus on view data
binding, while being as adaptable as possible to existing solutions. Our goal is that
in any solution our approach can replace just the view data binding part of the code,
while having minimal implications for the remaining application.

Offering a Reactive User Experience
Section 2.3 introduced reactive programming and the benefits it offers. We want users
of our approach to be able to make their applications reactive. The internal imple-
mentation of our concepts needs to be asynchronous where possible and must reduce
unnecessary waiting times to yield a responsive application.

19

3. Existing Solutions for View Data
Binding

This thesis is about presenting an approach for solving the view data binding problem
illustrated in the previous chapter. With such a relevant topic we apparently cannot
be the first to solve it. Therefore various existing solutions are examined and demon-
strated with examples. We conclude this chapter with a comparison of libraries that
are most similar to our implementation and point out what we learned from them and
how our approach is different.

3.1. Solutions targeting Desktop and Thin Web Clients
View data binding is not limited to rich web clients and was already an important issue
when desktop applications and thin web clients were popular. This is not surprising,
since as demonstrated in section 1.2 the three differ only in their distribution of layers
to the server or the client. An extreme certainly is a desktop application, where one
machine fills both the server and client role and executes all layers.

3.1.1. Eclipse Rich Client Platform (RCP)
The Eclipse Rich Client Platform (RCP) is an open tools platform that is used primarily
to build integrated development environments (IDEs). In theory it can be used to build
any kind of client application [Webv]. Probably the best-known RCP application is the
Eclipse IDE (see figure 3.1). It can be used to develop programs in Java and there
are many adaptions for other programming languages. Apart from the Eclipse IDE,
there are numerous products which have been built on top of RCP including reporting
software, customer relationship management and even tools for e-learning [Webc].

1 public void setUpBinding(IObservableValue<Boolean> modelValue,
2 ObservableValue<String> targetValue,
3 IBidiConverter<Boolean, String> converter,
4 IValidator<String> validator> validator) {
5 Bind.twoWay(modelValue)
6 .convert(converter)
7 .validate(validator)
8 .to(targetValue);
9 }

Listing 3.1: JFace Binding API

21

3. Existing Solutions for View Data Binding

In RCP the JFace library is commonly used to simplify view data binding [Vog]. In fig-
ure 3.1 a use case for JFace can be seen. The Eclipse IDE user interface (UI) supports
developers with navigating code by presenting an outline of all available methods in
the current file on the right. If an entry in the outline is clicked, the code in the center
scrolls to the correct position and highlights the corresponding method. The same ap-
plies to the other direction, so that moving the cursor to a method declaration in the
code will simultaneously select the appropriate entry from the outline list. Assuming
that this is realized by using a model attribute storing the currently selected method,
this information needs to be bound to those two locations in the UI mentioned earlier.

Figure 3.1.: Eclipse IDE, an RCP Application

JFace requires that all attributes that participate in view data binding implement
an interface so that they are turned into observable values. With that it is easy to
define bindings using a legible, imperative syntax [Webl] as shown in listing 3.1. The
example shows a two-way binding between a Boolean model attribute and a string
value inside the view. A validation is chained into any propagation of targetValue to
modelValue in line 7. Since targetValue is of type String, its validator also needs to
be an instance of the generic IValidator interface working on Strings (line 4). The
converter in lines 3 and 6 converts both modelValue and targetValue. It therefore
needs to implement the two methods modelToTarget and targetToModel. The first
produces a String by consuming a Boolean and the second does the exact opposite.

3.1.2. JavaServer Faces (JSF)
JavaServer Faces (JSF) is a technology for building server-side user interfaces [Webk].
It is typically used as the view component in an MVC architecture (see section 2.1.1)
together with managed beans as the model [Webaa]. Managed beans store applica-
tion data and may also perform validation, event handling and routing related tasks
[Weby]. Their attributes are referenced with an expression language inside the view
component [Webz]. One task that is taken over by JSF is to keep the displayed values
of those referenced attributes synchronized with model attributes, no matter if they
are changed in the view on the client or the model on the server.

22

3.1. Solutions targeting Desktop and Thin Web Clients

In such a thin client architecture, after a change to the model the view cannot be
updated without reloading it. However, this is usually undesirable, since it destroys
the interactive feeling of an application. Fortunately, JSF offers a solution to this by
employing AJAX to perform asynchronous communication with the server.

1 <html xmlns:f="http://java.sun.com/jsf/core"
2 xmlns:h="http://java.sun.com/jsf/html">
3 <h:body>
4 <h:form>
5 <h:inputText id="name" value="#{model.name}" />
6 <h:commandButton value="Display name">
7 <f:ajax execute="name" render="output" />
8 </h:commandButton>
9
10 <h:outputText id="output" value="#{model.name}" />
11 </h:form>
12 </h:body>
13 </html>

Listing 3.2: JSF, View Component

Listing 3.2 shows JSF markup that renders a view including a text box (line 5), a
button (lines 6 to 8) and a label (line 10). By using the expression language of JSF a
model attribute name is both bound to the value of the text box and the caption of the
label (lines 5 and 10). A click on the button causes the view data binding mechanism in
JSF to synchronize the attribute name and to render the element with id output again
(lines 6 to 8).

1 @javax.faces.bean.ManagedBean
2 @javax.faces.bean.SessionScoped
3 public class Model implements java.io.Serializable {
4
5 private static final long serialVersionUID = 1L;
6
7 private String name;
8
9 public String getName() {
10 return name;
11 }
12
13 public void setName(String name) {
14 this.name = name;
15 }
16 }

Listing 3.3: JSF, Model Component

23

3. Existing Solutions for View Data Binding

A model on the server containing an attribute name is required to complete the ex-
ample (see listing 3.3). Since JSF needs a managed bean, an annotation is added to a
standard Java class (line 1). If in addition the class follows the JavaBean conventions,
this is already sufficient. Those conventions demand that the class is serializable (lines
3 and 5) and every attribute is accessible through a getter (lines 9 to 11) and a setter
(lines 13 to 15). By convention #model.name (see listing 3.2, line 5 or 10) then resolves
to model.getName().

Figure 3.2.: HTML, Rendered by JSF

Figure 3.2 shows the example in action after deploying it onto a suitable web appli-
cation server. If the user enters something into the text box and clicks the button, the
label to the right of the button updates after the asynchronous AJAX call to the server
returns. Although invisible to the user, not only the label, but also the model attribute
on the server then contains the value entered into the text box.

3.1.3. Windows Presentation Foundation (WPF)
Windows Presentation Foundation (WPF) is a technology for rendering user interfaces
in windows-based applications [Webj]. It uses XAML, an extension of XML to describe
user interfaces and to define view data binding declaratively.

Concepts

Each binding in WPF consists of four components. The MSDN explains them with the
example of binding a text box to an employee’s name [Webd].

Binding Target Object
The element targeted by the binding. In this case the text box.

Target Property
The attribute of the binding target object that is bound. This is the text of the
text box.

Binding Source
The counterpart of the binding target object in the model. Here it is an Employee
object.

Path to Value
The address to the bound attribute inside the Binding Source analogous to the
target property. In this case this would typically be the Name property of the
Employee.

24

3.1. Solutions targeting Desktop and Thin Web Clients

Figure 3.3.: View Data Binding Flows in Windows Presentation Foundation

In addition, WPF differentiates between four types of data binding. They differ in the
direction of the data flow and in how long they remain active (see figure 3.3) [Webd].

OneWay
Data flows from source to target only. If the source is changed, the target will be
updated, but the source remains unchanged if the target is changed. This type of
binding is useful if non-editable model attributes are displayed to the user.

OneWayToSource
Opposite of OneWay. The source is updated if the target changes, but there is
no flow from source to target. This is typically used when user input needs to be
stored in the model without being displayed again.

TwoWay
Combination of the OneWay and OneWayToSource types. No matter which end of
the binding is changed, the other end will be updated accordingly. A regular use
case for this is editable data that are changed either in the model or in the view
by the user. For example, a change to the model happens if there is a change to
the underlying database.

OneTime
OneWay binding that is only executed once. The target is initialized with the
source value only one time and subsequent changes to the source have no effect
on the target.

Another interesting concept is binding triggers. Both TwoWay andOneWayToSource
have a property called UpdateSourceTrigger. It configures which event triggered by
the target causes an update to the source. A text box, for example, can be config-
ured so that updates are propagated only when it loses focus or after each key stroke
[Webd]. However, the concept lacks a pendant like UpdateTargetTrigger for the op-
posite direction [Webab] and does not allow registering multiple binding triggers for
one binding.

25

3. Existing Solutions for View Data Binding

Features and Example

WPF allows a declarative and imperative definition of binding and plugging in value
converters or components for validation. In addition, it is possible to bind collections
which can be sorted, filtered or grouped. To debug a binding it is possible to adapt a log
level, so that useful information about the internal execution becomes visible. These
features are demonstrated with a bidding platform (see figure A.1 in the appendix)
[Webd]. It lists items for sale and allows adding and bidding on items.
The list of items is bound to a collection in the model. Its elements are individually

styled and grouped. Grouping, Filtering and Sorting can be dynamically turned on or
off by using three check boxes. If an item is selected, the corresponding attributes are
bound to captions of labels in a description section.
Finally, the use of a converter is demonstrated with the attribute that stores how long

a user already has been a member. This attribute is stored as a Unix Timestamp in the
model, which is illegible to the user. Therefore, it is converted to a human readable
format before being displayed in the view.

1 <Application>
2 <Application.Resources>
3 <src:DateConverter x:Key="dateConverter"/>
4 <DataTemplate DataType="{x:Type src:AuctionItem}">
5 <!-- Binding is defined here -->
6 <TextBlock
7 Text="{Binding Path=StartDate,
8 Converter={StaticResource dateConverter}}"/>
9 </DataTemplate>
10 </Application.Resources>
11 </Application>

Listing 3.4: Binding a Text Box with a Converter using simplified XAML in WPF

Listing 3.4 shows how to define such a binding in WPF. In line 3 the aforementioned
converter is registered under the name dateConverter. In line 4 the Binding Source is
configured to be AuctionItem. Most relevant are lines 6 to 8, where the binding is es-
tablished with an expression inside the Text (Target Property) attribute of a TextBlock
(Target Object). Finally, the expression defines the missing Path to Value in Auction-
Item to be StartDate and plugs in the dateConverter converter.

3.2. Libraries for Rich Web Clients
This section moves the focus towards solutions for rich web clients that are more
similar to our implementation than those for desktop and thin clients. With Facebook
React, KnockoutJS and Ractive.js we are examining three of the most popular libraries
currently available for view data binding. To avoid giving the impression that there are
no other solutions available, we conclude this section by presenting five more libraries
briefly and make clear that even more can be easily found.

26

3.2. Libraries for Rich Web Clients

3.2.1. Facebook React

Facebook React is a JavaScript library that was developed and made publicly avail-
able by the social network facebook. It aims to ease the definition of modular and
composable components in web pages by offering its own markup syntax called JSX.
The reason why this library deserves a closer look is its popularity, its implicit ap-
proach on view data binding and the fact that it has similar goals in mind, such as
reducing boilerplate code and making web pages more performant by employing sur-
gical updates [Webf]. A component in Facebook React usually consists of two things,
a template and an internal state. Whenever the model which is represented by the
internal state changes, the library decides how to update the DOM that is an instan-
tiation of the template. To simplify the composition of components, each of them can
be defined in a separate file [Webg].

Figure 3.4.: Facebook React Comment Box — Component Structure

Facebook React attempts to increase the performance of web pages by automatically
applying event delegation and by using an algorithm called reconciliation. The idea
of event delegation is to reduce the number of event listeners by attaching a single
event listener to an ancestor element instead of attaching multiple listeners directly
to all elements. The easiest example of this technique is a list of elements, where
each element executes a certain action when it is clicked. Instead of attaching an
event listener to each element of the list, only one is added to the whole list to collect
all events. On this level it is usually still possible to determine which element was
clicked. One advantage of event delegation is that it increases maintainability. In
the list example, the code for change operations on the list becomes a lot simpler.
It needs only to modify the list itself and does not have to deal with updating event
listeners, too [Wal]. Also, the technique provides looser coupling between the DOM
and its associated code. Most importantly, event delegation increases performance,
because it requires less memory to manage event handlers [Zak].

27

3. Existing Solutions for View Data Binding

The second ingredient for performance in Facebook React is the reconciliation algo-
rithm. It tries to minimize the number of operations to transform one template instan-
tiation into another. Such a transformation is caused by an update to the underlying
model [Webe], usually a list.
To demonstrate how these concepts of Facebook React can be used, we want to

go over a simplified version of a comment box example adapted from a tutorial that
is part of the official documentation [Webh]. The comment box is broken down into
four components: a comment box acting as a container, a list of comments, a single
comment, and a comment form that allows to add a comment (see figure 3.4).

1 var CommentBox = React.createClass({
2 getInitialState: function () { return {data: []}; },
3 handleCommentSubmit: function(comment) {
4 this.state.data.push(comment);
5 this.setState({data: this.state.data});
6 },
7
8 render: function () {
9 return (
10 <div>
11 <CommentList data={this.state.data} />
12 <CommentForm onCommentSubmit={this.handleCommentSubmit} />
13 </div>
14);
15 }
16 });
17
18 var CommentList = React.createClass({/*...*/});
19 var CommentForm = React.createClass({/* ... */});
20 var Comment = React.createClass({/* ... */});
21
22 React.renderComponent(<CommentBox />, $(’#container’));

Listing 3.5: Comment Box with Facebook React

Listing 3.5 shows how each component is defined by using the library. In line 1
the surrounding comment box is defined. Lines 18 to 20 are there only to indicate
that all other components would be defined similarly. One might expect that not the
CommentBox component but the CommentList should manage the list of comments.
However, this would require that CommentFormmanipulated a sibling in the component
tree. Nevertheless, CommentList needs the list of comments, and this is resolved by
explicitly binding it as a parameter to CommentList in line 11. Lines 10 to 13 are
written in JSX and implicitly establish a binding whenever curly braces are used.
The CommentForm component in line 12, on the other hand, receives a reference to

the handleCommentSubmit function and will use it as a callback whenever a comment
is added. CommentBox in turn adds the comment to its internal state and Facebook
React propagates the change to CommentList. Line 22, finally, plugs the CommentBox
into an element from the DOM with an id of container.

28

3.2. Libraries for Rich Web Clients

3.2.2. Ractive.js

Ractive.js is a template-driven user interface library written in JavaScript [Webu]. It
offers a broad set of functionality including two-way binding, an expression language
for calculations or formatting and even animations. It was originally developed for
the web presence of The Guardian1 newspaper. Therefore, its primary goals were
that it be easy to develop, work reliably across multiple browsers and perform well on
mobile devices [Webu]. Ractive.js uses a double mustache notation to define a binding
between a template and a model. Although the syntax is very simple, it is possible to
express conditions and iterate over collections.

1 <div id="template" />
2
3 {{#items}}
4 {{itemLabel}}
5 {{/items}}
6
7 <input type="text" value="{{newLabel}}" />
8 <button onclick="addItem">Add Item</button>
9 </div>

Listing 3.6: Ractive.js Example Template

To put Ractive.js into action, a template like the one in listing 3.6 is required. It
displays an unordered list of items (lines 2 to 6). Every item consists of a label item-
Label (line 4). New items can be added by entering their label in a text box (line 7)
and clicking a button (line 8). The example executed in a web browser is illustrated in
figure 3.5.

Figure 3.5.: Ractive.js Item List

The code bringing this template to life is shown in listing 3.7. It first declares the
model comprising only the list of items (line 1), which is then passed into the library
(line 6). To set up Ractive.js it needs a reference to the template (line 5) and the ele-
ment, where the result should be appended to (line 4). items was declared globally to
be also accessible when handling the click on the button by the user (lines 9 to 11). By
overwriting the built-in JavaScript methods for collection modification including push
(line 10), Ractive.js recognizes that the model has changed and updates the output
accordingly.

1http://www.theguardian.com/uk

29

http://www.theguardian.com/uk

3. Existing Solutions for View Data Binding

1 var items = []
2
3 ractive = new Ractive({
4 el: $("#output"),
5 template: $("#template"),
6 data: { items: items }
7 });
8
9 ractive.on("addItem", function (event) {
10 items.push({ itemLabel: ractive.get("newLabel") })
11 });

Listing 3.7: Ractive.js Example Code

3.2.3. KnockoutJS
In section 2.1.2 we have already shown how KnockoutJS can be used to implement
simple view data binding in the Model-View-ViewModel pattern. In this section, we
want to go into more detail about the view data binding support of KnockoutJS.
The library uses its own binding syntax, which adds attributes to the template in a

declarative manner. A binding consists of a name and a value, which are separated by
a colon. The name has to match a registered binding handler or has to be a parameter
[Webn]. Built-in binding handlers include text, html and attr to bind to an elements
text, inner HTML and attributes. In addition, there are special handlers css and style
for adding or removing style classes or attributes. To serve non-standard use cases
KnockoutJS offers a mechanism to extend those handlers with custom ones [Webm].
The binding value can be a reference to a model attribute or almost any valid

JavaScript expression [Webn]. This also includes JavaScript functions that can be
bound to event handlers. For example, a callback function can be bound to the click
event of a button. KnockoutJS furthermore supports binding to collections and uses
surgical updates to efficiently refresh the view following changes to the model [Webo].
The library assigns a context to each node in the DOM. These contexts may be man-

ually switched with a command to zoom into the model. This way the context may
reference only a certain part of the model instead of the whole model. Conceptually,
this is more interesting when looking at control flow structures involving iteration.
The context then automatically contains attributes that allow accessing the current
element of the collection that is iterated and its index [Webp]. To demonstrate the
syntax of view data binding in KnockoutJS we use the same example of an extendable
list of items as in section 3.2.2 (see figure 3.5).

1 <div id="template">
2 <ul data-bind="foreach: items">
3 <li data-bind="text: itemLabel" />
4
5 <input type="text" data-bind="value: newLabel" />
6 <button data-bind="click: addItem">Add Item</button>
7 </div>

Listing 3.8: KnockoutJS Example Template

30

3.2. Libraries for Rich Web Clients

Listing 3.8 displays the template for the item list. In contrast to Ractive, Knock-
out uses data-bind attributes to specify the binding, which does not result in invalid
HTML for the template [Webx]. The binding handlers used in this example are text
(line 3), value (line 5) and click (line 6). Their corresponding binding values are
itemLabel (line 3), newLabel (line 5) and the function addItem (line 6). Moreover, it
can be seen that the context within the iteration (lines 2 to 4) switches from the whole
model to the current item, so that its label can be referenced directly.

1 function ItemList() {
2 this.items = ko.observableArray([]);
3 this.newLabel = "defaultLabel";
4
5 var self = this;
6 this.addItem = function() {
7 // ’this’ would be the ’addItem’ function here
8 // instead of the ’ItemList’ function
9 self.items.push({itemLabel: self.newLabel});
10 }
11 }
12
13 ko.applyBindings(new ItemList());

Listing 3.9: Knockout Example Code

The model for this template is presented in listing 3.9. An empty array initializes the
items in the ItemListmodel (line 2). In Ractive.js the callback function for the button
click did not need to reside inside the model. KnockoutJS, on the other hand, can bind
only to elements that are inside the model (lines 6 to 10).
As we will see in section 3.3, Facebook React, Reactive and also KnockoutJS share

the property of being tied to their model implementation. In the case of KnockoutJS
this has led to the development of Knockback2, which tries to combine both KnockoutJS
and Backbone.js3.

3.2.4. Other Libraries

Analyzing and presenting every framework that offers some sort of view data binding
support would certainly exceed the scope of this chapter. We investigated and counted
more than 30 libraries. The complete list can be found in section A.1.3 of the appendix.
Because of the relevance of the topic, the number of libraries is rapidly increasing.
Nevertheless, we want to provide an overview by introducing some additional libraries
in a shorter format.

2http://kmalakoff.github.io/knockback/
3http://backbone.js.org/

31

http://kmalakoff.github.io/knockback/
http://backbone.js.org/

3. Existing Solutions for View Data Binding

RivetJS http://rivetsjs.com/
RivetJS is a very lightweight solution for view data binding. Its source code after
minification is only around 20 kB uncompressed and less than 4 kB compressed
with gzip. Similar to KnockoutJS, it uses DOM attributes to define the binding
in a declarative manner. The library is special in that it is one of the very few
that is truly agnostic to the model implementation. The model is always accessed
through a component called adapter, and to support new model implementations
only an appropriate adapter has to be added.

RivetJS goes even further and allows chaining different adapters. This way, it is
possible to reference a backbone model that is nested inside a plain JavaScript
object. Our implementation, however, does not support such an adapter chaining,
because we think this would introduce too much coupling between the view and
the structure of the model.

Ripple https://github.com/ripplejs/ripple
Ripple is a simple view data binding library written in JavaScript. It allows com-
posing views similar to Facebook React but encapsulates an individual set of plug-
ins into each component. Those plug-ins, for example, include iteration, event
handling or computed properties.

Vue http://vuejs.org/
Vue focuses on simplicity while offering a broad set of powerful functionality.
In contrast to KnockoutJS, which consistently uses the data-bind attribute, the
library adopts different attributes to express the type of binding like v-text or v-
attr. Besides, Vue supports defining bindings with a double mustache notation
comparable to Ractive.js. Similar to Facebook React, it is component-oriented
and follows the same idea as web components. This means that Vue.js bundles
a template, its binding and a ViewModel together, which can then be referenced
by its name and plugged into any other location.

MontageJS https://github.com/montagejs/frb
MontageJS is a framework for building web applications and includes much more
than view data binding. A project that is part of it is Functional Reactive Bind-
ings (FRB). FRB is unique in the sense that it makes it possible to define a binding
imperatively. This means that not DOM elements are enriched with annotations;
rather code statements set up a binding. With this it is the only library that theo-
retically allows definition of view data binding separated from the view. However,
this is almost impractical, because it requires such great effort.

Additionally, not only does FRB cover binding view to model; it also offers rich
functionality including higher-order functions like map or filter to bind any two
values. These bindings, however, are designed to solve a more abstract problem
and are almost impractical for use in rich clients.

Reactive https://github.com/component/reactive
Reactive has an API similar to Ripple but lacks its ability to compose views.
Roughly speaking, Reactive is the predecessor of Ripple.

32

http://rivetsjs.com/
https://github.com/ripplejs/ripple
http://vuejs.org/
https://github.com/montagejs/frb
https://github.com/component/reactive

3.3. Comparison of Rich Web Client Libraries

3.3. Comparison of Rich Web Client Libraries

In this section the eight solutions for view data binding in rich web clients previously
presented are compared. The primary goal of this comparison is to determine whether
one library exists that already satisfies all needs. If this is not the case, we can learn
which aspects need to be improved in a novel approach to contribute relevant work to
the topic.

3.3.1. Methodology

We examined and combined more than 30 aspects including the predominant features
that were named in the documentation of the libraries. After adapting this criteria cat-
alog to cover all relevant ingredients, we broke it down into five different categories.

Design
How many options are there to define the binding? Is it necessary to violate ar-
chitectural best practices when applying the solution? Is the library performant,
and is its level of abstraction appropriate for the task at hand?

Compatibility
Does the solution play well with various model implementations and browsers?

Features
How rich is the set of available functionality?

Usability
How understandable and maintainable is the code for the binding? How much
effort is necessary to apply the library to an existing solution?

Support
Is it easy to get information about and assistance with the library?

Reliability
How risky is it to use the solution? How much care did the developers take to
provide a stable solution?

Each aspect was graded with a positive score that increases, or a negative score
that decreases the overall rating by one point. There are neutral scores that do not
affect the result, and in some rare cases there are aspects that can yield two points. An
in-depth description of every aspect and how it was evaluated can be found in section
A.1.1 of the appendix.
While there are easily assessable aspects like the size of the library in kB, there are

others where the correct rating is not obvious. These scores should be understood
as qualitative. However, this does not affect the results of the comparison, since it
depends more on the overall quality of a library than on every detail.

33

3. Existing Solutions for View Data Binding

3.3.2. Results and Conclusion
The accumulated scores in table A.7 suggest that KnockoutJS, followed by Ractive.js
and Facebook React currently offer the best available solutions for view data binding
in rich web clients. But the table also shows that there is room for improvement,
especially when it comes to design (see table A.1) and compatibility (see table A.2).

Results

With their excessive expression language, both KnockoutJS and Facebook React allow
putting too much business logic into the view. Specifying the binding separated from
the view, which would be a more preferable design choice, is not fully supported in
any framework. In addition, no solution is flexible enough to allow both an imperative
and a declarative definition of the binding.
A big drawback of KnockoutJS, Facebook React and Ractive.js is that they do not

focus on view data binding only and impose the use of a specificmodel implementation.
This means that they are incompatible with various model implementations including
hierarchical models. Only RivetJS receives good scores in terms of compatibility, but
it is too lightweight to offer a rich set of features as other libraries (see table A.3).
In general, we liked the usability of the frameworks (see table A.4). Ractive.js and

RivetJS scored the most and MontageJS the least points in this category. However, the
problem of compatibility pertains to usability, because it makes it difficult to integrate
the frameworks into existing solutions.
Those libraries that offer good support aremore popular (see table A.5). This connec-

tion is easily explained, since new users require a good documentation to get started
and as the number of users increases, it is easier to find help in communities.
Some aspects, such as maturity in the reliability section (see table A.6), cannot be

influenced directly by the authors of a library. Many solutions like Ractive.js or Mon-
tageJS, however, did not convince us with their architectural and implementational
cleanliness.

Conclusion

While almost all libraries we examined received a good rating, there are differences
in quality and we identified room for improvement. No library offers a binding that
can be defined separately and is truly model agnostic while still offering a rich set
of features. Also, no solution fully addresses our idea of holisticity regarding a high
degree of freedom in defining the binding.

34

4. Concept and View Data Binding
Ontology

Before introducing the Concepts for realizing View Data Binding we give an overview
of relevant terms and their relationships. This ontology will then allow us to consis-
tently explain our Concepts throughout the next chapter. Whenever we refer to a term
from the ontology we indicate it by putting it in italics.

Concept Ontology
Concepts can be either divided into Core and Convenience Concepts or into Binding
and Structure Concepts. Therefore, we have four different types ofConceptswhich are
Core Binding, Core Structure, Convenience Binding or Convenience Structure Con-
cepts. The relations of the terms is illustrated in figure 4.1.

Figure 4.1.: Concept Ontology

Core versus Convenience Concepts
Core Concepts are the essential building blocks of our View Data Binding. They would
cause a loss of expressiveness if missing. It follows naturally that a Core Concept can
not be replaced by a combination of other Core Concepts and that the set of Core
Concepts is minimal.
Convenience Concepts on the other hand are solely introduced to satisfy nonfunc-

tional requirements like usability, readability andmaintainability. They do not increase
expressiveness and could be seen as Syntactic Sugar. We will therefore later demon-
strate how each of our Convenience Concepts is derived from Core Concepts.

35

4. Concept and View Data Binding Ontology

An intuitive example of a Convenience Binding Concept is Two-Way Binding (see
section 5.3.1). Even without any knowledge about semantics it should be clear that
it can be transformed into two One-Way Bindings (see section 5.1.2). This, however,
doubles the amount of code and justifies the existence of Two-Way Binding.

Binding versus Structure Concepts
Concepts regarding View Data Binding are called Binding Concepts. On the other
hand, Structure Concepts provide tools for organizing an application. Structural needs
only emerge from best practices that demand component oriented applications (see
sections 2.1.1, 2.1.2 and 2.1.3) and would not be relevant in a Big Ball of Mud archi-
tecture.

View Data Binding Ontology
The goal of this ontology is to give certain entities unique names. This builds a solid
foundation for communication. Although we will sometimes give illustrative examples,
the focus of this section does not lie on semantics, but on the terms itself and their
relationships. The complex diagram of figure 4.2, which we want to elucidate with
some accompanying notes, covers most of the information concerning this section.
Blue boxes represent entities and arrows or plain connections show relationships

between them. The latter have multiplicities if useful and hold the semantics known
from Unified Modeling Language class diagrams. As a reminder of their meanings we
included a legend showing how everyday terms can be related to them. The root of
the ontology, which is – apart from few exceptions – a tree, is View Data Binding, the
main topic of this thesis.

Data Targets

The task of View Data Binding is to connect and synchronize Data Targets. In partic-
ular, these are Presentation Model and View Mask. In addition, we identified a third
Data Target called Binding Scope (see section 5.1.2.3).
The View Mask comprises a Template DOM Fragment, which is – together with the

Presentation Model and Binding Specification – processed to produce the DOM Frag-
ment. The latter is mounted into the View Mask at a designated spot called Mount
Point. The term View Mask typically describes an HTML page in a web environment,
but could be any kind of user interface, such as the one of a desktop application.

Binding Specification

The Binding Specification is the syntactical representation of our Concepts and every
entity of its subtree will later be defined with a grammar. It comprises an arbitrary
number of Blocks which are either a Group (see section 5.2.1) or a Scope (see section
5.1.1). Each Block may have child Blocks which creates a tree of Groups and Scopes.
Every Scope must have at least one Selector, while the attributes Iteration, Tem-

plate, Insertion are optional.

36

Fi
gu
re
4.
2.
:V
ie
w
D
at
a
B
in
di
ng

O
nt
ol
og
y

37

4. Concept and View Data Binding Ontology

With Iteration elements are either repeated or conditionally shown and hidden. We
call the first case Each and the latterWhen. In both cases Iteration provides the Entry
that is currently iterated and the Key of that Entry. If Iteration occurs asWhen, this in-
formation is typically not required (see section 5.1.3). The realizations of Template are
Template Extraction and Injection (see section 5.4.1). With the Concept of Insertion it
is possible to create Sockets that are identified by a Label (see section 5.2.2).

Binding Rules

The actual instructions for View Data Binding are defined by the Binding Rules of a
Scope. Bindings are formed of two or three Segments, which are separated by Seg-
ment Binding Operators (see section 5.1.2).In turn, Segments are realized by either
Initiated Resource Sequences or Connector Chains which comprise at least one Con-
nector. Connectors are separated by Connector Binding Operators.
An Initiated Resource Sequences is, as its name suggests, a combination of an op-

tional Initiator and a Resource Sequence (see section 5.3.3). An Initiator is a combina-
tion of two Resource Sequences where one of them acts as the Initiator and the other
is Initiated. The two are combined with the Initiator Binding Operator (see section
5.3.4).
Obviously, the shorthand names for Segment, Connector and Initiator Binding Op-

erator as well as those for Initiated, Initiator Resource Sequence and Resource Se-
quence itself are overlapping. This is intentional, since it allows to talk about Binding
Operators or Resource Sequences in an abstract way.
All Resource Sequences consist of Expressions (see section 5.3.6). Every Expres-

sion may comprise an arbitrary number of Adapter including no Adapter at all. The
semantics of an Adapter are explained in section 5.1.2.1. Please note that the plural
of Adapter is also Adapter.

38

5. View Data Binding Concepts
In this chapter we define and explain the Concepts which are necessary to realize
View Data Binding. They are designed to cover the use cases we found while examin-
ing existing solutions (see chapter 3) and applications as much as possible. For each
Concept we introduce its syntax and semantics, or, in other words, how it is denoted
and what it means. In case of Convenience Concepts we define their semantics by
explaining how they are derived from Core Concepts.
The syntax of our Domain Specific Language for View Data Binding is defined with

Parsing Expression Grammars [For04]. These grammars are written as the quadru-
ple G = (VN , VT , R, eS) of VN , the set of non-terminal symbols, VT , the set of terminal
symbols, R, the set of rules and eS, the start expression. To keep their representations
compact we denote them just by their rules R, implicitly specifying VN and VT . All
elements from VN are always capitalized in R, while members of VT are enclosed in
quotation marks or denoted as regular expression. These expressions, such as [a-z]
or [@$%], refer to equivalence classes and should be interpreted as the set of strings
that are matched by the given regular expression. Further, we implicitly declare the
start expression eS by coloring it in gray.

5.1. Core Binding Concepts
In this section the Concepts of Selection, Binding and Iteration are introduced. In
short, Selection determines which elements of the Template DOM Fragment to bind,
while Binding defines how these elements are bound. Last, Iteration allows to repeat
parts of the Template DOM Fragment, or to conditionally show or hide them.

5.1.1. Selection
The goal of View Data Binding is to bind elements from the two Data Targets, Template
DOM Fragment and Presentation Model. Therefore, we need a way to specify which
element of aData Target should be bound. The information that allows locating certain
elements of a Data Target is called a Path. In order to succeed in this we identified five
different ways. To explain them vividly the HTML from listing 5.1 serves as a Template
DOM Fragment and the JSON object from listing 5.2 as a Presentation Model. The
objective of the example is to bind the two span elements (Listing 5.1, lines 3 and 5)
to the text Lorem ipsum (Listing 5.2, line 4).

39

5. View Data Binding Concepts

1 <div id="template">
2 <div class="foo">
3
4 </div>
5
6 </div>

Listing 5.1: Template DOM Fragment

1 var model = {
2 foo: {
3 bar: {
4 baz: "Lorem ipsum"
5 }}}
6

Listing 5.2: Presentation Model

The five options, where 2b is the inverse of 2a and 3b the opposite of 3a, are as
follows

1. Fully qualifying both Paths in each Binding.

2a. Specifying the Path for the Presentation Model dedicated to a set of Bindings, so
that each Binding only needs to specify the Path for the Template DOM Fragment.

2b. Specifying the Path for the Template DOM Fragment dedicated to a set of Bind-
ings, so that each Binding only needs to specify the Path inside the Presentation
Model.

3a. Implicitly specifying the Path for the Template DOM Fragment by adding the
Binding to it.

3b. Implicitly specifying the Path for the Presentation Model by adding the Binding
to it.

Listing 5.3 shows options 1, 2a and 2b. Option 3a is well known from many exist-
ing frameworks, such as KnockoutJS (See listing 3.8). We do not visualize option 3b
because it is only of theoretical character.

1 // 1. Qualifying both paths
2 bind("span").in("TDF").to("foo.bar.baz").in("PM")
3
4 // 2a. Presentation Model first
5 foo.bar.baz {
6 bind.to("span")
7 }
8
9 // 2b. Template DOM Fragment first
10 span {
11 bind.to("foo.bar.baz")
12 }

Listing 5.3: Three Possibilities for Selection

For the sake of Separation of Concerns we drop both options 3a and 3b. They do not
allow to specify a View Data Binding separately and define it in a place of a different
concern. Option 1 is too verbose, since there is no convention about the place where
each of the Paths is written. Thus, this information has to be attached each time.

40

5.1. Core Binding Concepts

With the remaining options 2a and 2b left we decided to use 2b. That is because due
to the huge popularity of CSS, which operates in a similar fashion, this option feels
most natural.

Selection Syntax

The syntax for Selection is inspired by less1, which is a CSS preprocessor, primarily
increasing readability andmaintainability of CSS code. Its biggest advantage over CSS
is that it allows to hierarchically structure Selectors. From an ontology perspective
we define the syntax of a Scope with grammar 5.1.

Scope← Selectors "{" ScopeBody∗ "}"
Selectors← Selector ("," Selector)∗

ScopeBody← Scope | Binding

Grammar 5.1: Syntax of Scope

The non-terminal symbols Binding and Selector remain open. Binding will be de-
fined in section 5.1.2 and Selector stands for any valid CSS selector2. For reasons of
shortness, we decided not to include their grammar.
Listing 5.4 shows a valid document that is produced by this grammar. All Selector

elements are highlighted in blue.

1 #wrapper {
2 <Binding-1>
3 div > .input, span {
4 <Binding-2>
5 }
6 <Binding-3>
7 div {
8 div + p {
9 <Binding-4>
10 }
11 .empty {}
12 }
13 <Binding-5>
14 }

Listing 5.4: Selection Example

1http://lesscss.org/
2http://www.w3schools.com/cssref/css_selectors.asp

41

http://lesscss.org/
http://www.w3schools.com/cssref/css_selectors.asp

5. View Data Binding Concepts

Selection Semantics

Each Scope has a subset of elements of the Template DOM Fragment which is defined
by its Selector. We call a Scope that has no parent a Root Scope. All Root Scopes
apply their Selector to the whole Template DOM Fragment. The matched set becomes
the subset of elements of that Root Scope. Any other Scope uses the descendants of
elements from its parent’s Scope as its context for applying the Selector. Listing 5.6
shows pseudo JavaScript code that demonstrates how the set of matched elements for
each Scope is determined.
We want to explain this algorithm with an example, use the Scope definition from

listing 5.4 and add the missing Template DOM Fragment with listing 5.5.

1 <div id="wrapper">
2
3
4 <div id="data">
5 <input id="name" type="text" />
6 </div>
7 <input type="button" value="Submit" />
8 </div>

Listing 5.5: Template DOM Fragment Example

Here every line, except lines 6 and 8, contains exactly one element of the Template
DOM Fragment. All elements from lines 2 to 7 are descendants of the element in line
1, and the one from line 5 is a descendant of both elements from lines 1 and 4. The
example from listing 5.4 contains one root Scope with the Selector #wrapper. This
means that it matches all elements having an id attribute that is equal to wrapper.
The only element satisfying this criterion is in line 1 and therefore becomes the only
item in the set of matched elements for this Scope.
The Scope with the Selectors div > input and span now retrieves the descendants

of all elements matched by its parent. These are exactly the elements from lines 2 to
7. Within these all are selected which either are of type span or input, having a div
as their parent. This obviously applies to the elements from lines 2, 3 and 5, but not
the input from line 7. Although it has a div as its parent this element is not part of
the context.
Another approach in clarifying the semantics is that it is always possible to eliminate

the nesting of Scopes. Listing 5.7 shows how this can be done to the example from
listing 5.4. Also, it shows clearly why it is advantageous to use nested Scopes. The
Selectors of all ancestor Scopes, such as #wrapper, have to be written over and over
again for each new Scope.

5.1.2. Binding
The goal of a Binding is to keep values from Data Targets synchronized. The typical
use case is to bind a value of the View Mask to an attribute of the Presentation Model,
so that if any of the two is modified, the other changes accordingly. To introduce
our understanding of a Binding we need to define the two components Adapter and
Connector first.

42

5.1. Core Binding Concepts

1 global templateDomFragment = ...
2
3 foreach (rootScope in Scopes) {
4 match(rootScope)
5 }
6
7 function match(scope) {
8 var matchedElements = [] /* Set */
9 var selectors = scope.getSelectors()
10
11 if (!scope.hasParent()) {
12 foreach (selector in selectors)
13 matchedElements.addAll(templateDomFragment.apply(selector))
14 } else {
15 var parentMatchedElements = scope.getParent().getMatchedElements()
16 var descendants = getAllDescendants(parentMatchedElements)
17
18 foreach (selector in selectors)
19 matchedElements.addAll(descendants.apply(selector))
20 }
21 scope.setMatchedElements(matchedElements)
22 // Recursion
23 foreach (childScope in scope.getChildren()) {
24 match(childScope)
25 }
26 }

Listing 5.6: Pseudo Code Setting Set of Matched Elements for Scopes

1 #wrapper {
2 <Binding-1>
3 <Binding-3>
4 <Binding-5>
5 }
6 #wrapper div > .input {
7 <Binding-2>
8 }
9 #wrapper span {
10 <Binding-2>
11 }
12 #wrapper div div + p {
13 <Binding-4>
14 }
15 #wrapper div .empty {}

Listing 5.7: Selection Example Flattened

43

5. View Data Binding Concepts

5.1.2.1. Adapter

Our definition of an Adapter is not fundamentally different from the classical design
pattern in the famous book Design Patterns by the Gang of Four. There its intent is
described as follows.

“Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn’t otherwise because of

incompatible interfaces.” — Adapter (Intent), Design Patterns [Gam+95]

Instead of converting class interfaces we want to make access to variousData Target
implementations consistent. There are many different ways to realize the Presentation
Model. It can be a plain JSON object, a Backbone model (see section 2.1.1) or even
a hierarchical structure as in ComponentJS (see 2.1.3). Although the implementation
and the many examples we present assume that the View Mask is always realized with
HTML, an Adapter could abstract from any other user interface technology. This espe-
cially means that our Concepts are also applicable to desktop or mobile applications.
The primary goal of the Adapter is to make our Conceptsmodel agnostic. It converts

the interfaces of Data Targets into a consistent representation and allows to treat
them all alike. Any operation concerning a Data Target is never made directly, but
always through an Adapter. This way the Presentation Model implementation can be
exchanged effortlessly by only replacing the Adapter.

Adapter Syntax

An Adapter is formed by concatenating a Prefix and an optional Qualifier. The Prefix
is the unique name of the Adapter and its Qualifier a static parameter. A View Mask
Adapter that modifies attributes of HTML elements could have the Prefix attr. Its
Qualifier would express the name of the attribute modified. Instances of this Adapter
could be attr:id, attr:class or attr:style.
The Qualifier is defined to be static to increase readability. After introducing the

Parameter concept in section 5.3.5 it will be possible to use multiple and even dynamic
instructions.
The syntax of an Adapter is defined by grammar 5.2. Its Prefix may be a single

special character, such as %, @, $, or an arbitrary string. In the first case the Qualifier
is written directly behind the Prefix and in the latter it is separated by a colon. If no
Qualifier is used, the colon may be dropped. If the Prefix is a special character, the
Qualifier must not be empty. These rules ensure both readability and shortness.

Adapter← [@$#%&] [a-zA-Z_] ([a-zA-Z0-9_-])∗ |
[a-zA-Z_] ([a-zA-Z0-9_])∗

(":" ([a-zA-Z_] [a-zA-Z0-9_-])∗
)?

Grammar 5.2: Syntax of Adapter

Examples of syntactically valid Adapter are $name, @temp, value, text, attr:data-
name, model:intro. Edge cases are _ or _:_.

44

5.1. Core Binding Concepts

For the sake of shortness, we recommend to assign a single, special character as
Prefix to each of the most common Adapter, and we will apply this recommendation
throughout the rest of our examples. We denote any Presentation Model Adapter with
the $ Prefix and any Binding Scope Adapter with the @ Prefix.

Adapter Semantics

An Adapter is associated to a certain Data Target and it is the only component that
knows how to read from, or write values to it. To be model agnostic, the internal data
representation of a Data Target cannot be considered inside a Binding. Therefore, we
introduce the idea of a Path which reduces the information about the location of a
certain data item to a list of identifiers. The Adapter can then decide how to map any
Path to its underlying data structure.

1 var model = {
2 people: [
3 { name: "Alice", age: 35 },
4 { name: "Bob", age: 37 },
5 { name: "Martha", age: 67 }
6]
7 }

Listing 5.8: Presentation Model Example defined with JSON

We want to illustrate the idea and why we need Paths with an example. Consider
a Presentation Model which comprises a list of people who are all equipped with in-
formation about their name, age et cetera. It could be implemented with JSON as in
listing 5.8. If the Adapter is asked for all people, it cannot just return the data in the
format of its Data Target because this would mean that the Binding would also need
to have knowledge about its implementation. In fact, the only values that a Binding
should deal with are instances of primitive data types. This means that an Adapter
may only produce one or more Paths that all are References to primitive values.

• ["people", 0, "name"]

• ["people", 0, "age"]

• ["people", 1, "name"]

• ["people", 1, "age"]

• ["people", 2, "name"]

• ["people", 2, "age"]

• ...

If the name of the second person should be bound to a text box, the Presentation
Model Adapter can be simply asked for the correct string which is then placed in the
text box. If, however, the Binding should work aswell in the other direction so that

45

5. View Data Binding Concepts

a user can change the value of the text box, there needs to be way of instructing
an Adapter to update a certain part of its Data Target. The Path exactly serves this
purpose. To summarize this, an Adapter needs to provide the functionality of getting
the primitive value or a list of subordinate Paths for a given Path and of setting the
information at a given Path to a certain primitive value.
According to the three Data Targets, we differentiate three types of Adapter namely

the View Mask, Binding Scope and Presentation Model Adapter. We assume that each
Adapter is able to provide information about its type. The type of an Adapter deter-
mines what an empty Path stands for. In case of the Presentation Model and Binding
Scope Adapter it just means the whole Data Target. The View Mask Adapter, on the
other hand, is never associated to the whole Template DOM Fragment, but always
to the element matched by its enclosing Scope. Another difference is that, since the
Template DOM Fragment is a static input to the View Data Binding, we assume that
any View Mask Adapter never modifies the structure of its Data Target, but only the
attributes of its elements.
The Qualifier of an Adapter is nothing but a possibility to syntactically specify the

first element of the Path. The semantics of the symbol referencing an Adapter is the
functionality of getting and setting values for given Paths. If a Qualifier is present, it
is pushed in front of any incoming Paths when setting values and removed from any
outgoing Paths when getting values.
We further assume that an Adapter is observable. This means that if a change lis-

tener was previously registered for the Path specified by the Adapter, this listener
must always be notified whenever the value referenced by the Path changes.

5.1.2.2. Connector

Apart from Adapter, a Bindingmay consist of Connectors or, more generally, of a Con-
nector Chain. In contrast to the Adapter, a Connector does not deal with Data Targets,
but processes, transforms or modifies JSON data that is propagated through a Bind-
ing. It has no knowledge about its surroundings and especially has no direct access to
any Data Target. In other words, Connectors are free of side effects.
A Connector should intuitively be seen as a function that consumes input parameters

and produces an output. To illustrate how useful they are we present the various types
of Connectors that we identified in table 5.1.
All Connectors from table 5.1 have in common that they produce an output that is

unrelated to their input. There are, however, other types of Connectors shown in table
5.2 that only rearrange instead of modify their input.

Connector Syntax

Grammar 5.3 for Connectors is very simple, since they are represented by just
strings.

Connector← [a-zA-Z_] ([a-zA-Z0-9_])∗

Grammar 5.3: Syntax of Connector

46

5.1. Core Binding Concepts

Name Description Examples
Converter Most abstract form of a Connec-

tor. It may perform any kind of
conversion.

Formatters for dates or
currencies, replacing
i18n identifiers with their
translations or any typical
use of the higher order
function map

Validator Typically information that is en-
tered by a user is validated. This
type of Connector produces an
indicator, whether the validation
was successful, and may addition-
ally include the original value.

String length and charac-
ter set or email and post-
code validation

Aborter Causes that the Propagation of
data through a Binding stops.

Two Bindings, but only
one of them active at the
same time based on a con-
dition

Aggregator Operates on collections and pro-
duces one value or a collection
that has fewer elements than its
input.

Count, sum, average,
grouping

Table 5.1.: Value modifying Connectors

Name Description Examples
Filter Looks at every element of a collec-

tion and decides if it remains in or
leaves the collection.

List of people, filtered
by gender, maximum age,
place of birth etc.

Sorter Modifies the order of elements in
a collection.

List of people, sorted by
name, age etc.

Generator In theory multiplies certain or all
elements of a collection and pro-
duces an output that is larger than
its input.

Table 5.2.: Collection modifying Connectors

47

5. View Data Binding Concepts

Connector Semantics The semantics of the symbol referencing a Connector are de-
fined by a function consuming and producing a JSON object. In addition, the output
of a Connector can be a special abort symbol.

Binding Syntax

The syntax of a Binding is defined by grammar 5.4. In defining the non-terminal Bind-
ing it adds to grammar 5.1 for Scopes. For the sake of readability Segment Binding
Operator is abbreviated to Sbo and Connector Binding Operator to Cbo. Listing 5.9
shows different examples of syntactically valid Bindings.

Binding← Adapter Sbo ConnectorChain Sbo Adapter |
Adapter Sbo Adapter

ConnectorChain← Connector (Cbo Connector)∗

Sbo← "<-" | "->"
Cbo← "<-" | "->"

Grammar 5.4: Syntax of Binding

1 Adapter <- Adapter
2 Adapter -> Adapter
3 Adapter <- Connector <- Adapter
4 Adapter -> Connector -> Connector -> Adapter
5 Adapter <- Connector -> Connector <- Adapter

Listing 5.9: Binding Examples

Line 5 defines aBindingwhich is semantically wrong. To keep the grammar as simple
as possible, we decided against preventing such ill-formed Bindings on the grammar
level.
The symbols <- and -> are used for both Segment and Connector Binding Operators

because the terminological difference is neither intuitive nor important from a devel-
oper perspective. The symbols itself are intuitive, short and can not be easily confused
with the relational operators < or >.
By combining grammar 5.4 and 5.2 for Adapter, it is now possible to express simple

Bindings as shown in listing 5.10. We generally prefer to write View Mask Adapter on
the left and Presentation Model Adapter on the right.

1 div {
2 attr:class <- $class
3 }

Listing 5.10: Adapter Example

48

5.1. Core Binding Concepts

Depending on the semantics of the participating Adapter, this Binding could express
that the attribute from the Presentation Model named class is bound to all class
attributes of any div elements inside the DOM Fragment.
Listing 5.11 shows a more complex example that also makes use of the Connectors

defined by grammar 5.3.

1 div.wrapper {
2 span.intro {
3 text <- i18n <- $introI18nId
4 }
5
6 input#zip {
7 value -> validateZip -> $zipValid
8 }
9
10 @text <- doOnce <- $defaultText
11 textarea#text {
12 value -> @text
13 }
14
15 span.charsWithoutWhitespaces {
16 text <- length <- join <- split <- @text
17 }
18 }

Listing 5.11: Connector Examples

The names of the Connectors hint at their semantics. They could be a Converter in
line 3, a Validator in line 7 and an Aborter in line 10. Line 16 shows a Connector Chain,
which could calculate the number of non blanks in @text depending on the meaning
of split, join and length.

Binding Semantics

Figure 5.1 shows the typical flow of data realized by Bindings. It visualizes how
Adapter abstract away their underlying Data Targets and that typically Presentation
Model are bound to View Mask Adapter with optional intermediate Connector Chains.
Data may also be stored temporarily inside the Binding Scope.
A Binding is semantically valid if it is recognized by grammar 5.4 and uses only one

of the available Binding Operators. It is therefore either read from left to right if it uses
-> only or read from right to left if it uses <- only. With this definition of direction it
intuitivelymakes sense thatAdapter andConnectors inside aBinding have a Successor
and a Predecessor. We call the Adapter without a preceding element the Source and
the one lacking a Successor the Sink Adapter of a Binding.
Semantically it is irrelevant in which direction the Binding is written. This means

that it may be mirrored without changing its meaning. Also, the order of Bindings
inside a Scope is irrelevant to their semantics.

49

5. View Data Binding Concepts

Figure 5.1.: Typical Data Flow through Adapter and Connectors

Every Connector Chain inside a Binding can be expressed by a single Connector
which consecutively executes their underlying functions. Consider the following Con-
nector Chain.

@sink <- foo <- bar <- baz <- @source

It can be expressed by a single Connector quux, which first processes the input in
the same way as baz and then uses that output as the input for the part representing
bar. The result becomes the input for the logic replacing foo producing the overall
output.
This means that it is sufficient to define the semantics of the following two Bindings,

one without and one with a Connector.

Adapter <- Adapter

Adapter <- Connector <- Adapter

Any Binding operates as soon as the value of its Source Adapter changes. We call the
algorithm that handles that change Propagation. When it starts, the Source Adapter
is asked to produce a set of Paths from the Path that is defined through its Qualifier.
This set of Paths is converted into structured JSON. Each Path is also wrapped into
a Reference which is nothing but a Path in combination with the Adapter responsible
for it. This means that it can always be converted to its underlying primitive value. To
illustrate this, consider the following examples denoted with JSON shown in table 5.3.
The successor of the Source is either a Connector or an Adapter. If it is an Adapter

other than the Binding Scope Adapter all References are converted into values and
the resulting object is passed to the Adapter, which writes it to its associated Data
Target at the Path that is defined by its Qualifier. If it is a Connector, it is called
with the converted object as its input and Propagation continues with the result of the

50

5.1. Core Binding Concepts

1 // Initialization
2 foreach (binding in bindingSpecification) {
3 binding.getSource().observe(
4 propagate(binding.getSource(), binding.getSink())
5)}
6 // Propagation
7 function propagate(source, sink) {
8 // Read
9 var pathToRead = []
10 if (source.hasQualifier()) {
11 pathToRead.add(source.getQualifier())
12 }
13 var paths = source.read(pathToRead)
14 // Convert
15 var value = convert(paths)
16 // Evaluate Connector
17 if (source.getNext().getType() == "Connector") {
18 var connector = source.getNext()
19 value = connector.process(value)
20 if (value == abort) {
21 return
22 }}
23 // Write
24 if (sink.getType() == "BindingScopeAdapter") {
25 var currentValue = bindingScope.get(sink)
26 if (!currentValue ||
27 (!isReference(currentValue) && !isReference(value))) {
28 bindingScope.write(sink, value)
29 } else if (!isReference(currentValue) && isReference(value)) {
30 bindingScope.write(sink, value)
31 } else if (isReference(currentValue) && isPrimitive(value)) {
32 currentValue.set(value)
33 bindingScope.notifyChanged(sink)
34 } else if (isReference(currentValue) && isReference(value)) {
35 if (currentValue.getType() == value.getType()) {
36 bindingScope.write(sink, value)
37 } else {
38 currentValue.set(value.getValue())
39 bindingScope.notifyChanged(sink)
40 }
41 } else {
42 bindingScope.write(sink, value)
43 }}} else {
44 value = resolveReferences(value)
45 sink.write(value)
46 }}

Listing 5.12: Propagation

51

5. View Data Binding Concepts

Source
Adapter

Paths Returned Converted Object

$name [[]] {Adapter: $, Path: [name]}
$people [[0], [1], [2]] [{Adapter: $, Path: ["people", 0]},

{Adapter: $, Path: ["people", 1]},
{Adapter: $, Path: ["people", 2]}]

$data [["foo"], ["foo",
"bar"], ["foo",
"bar", 0]

{foo: [{Adapter: $, Path: ["foo",
"bar", 0]}]}

Table 5.3.: Conversion to References when reading from Adapter

Connector. If it, however, produced the abort symbol, Propagation stops. The process
is shown with pseudo JavaScript code in listing 5.12.
If the Data Sink Adapter of the Binding is the Binding Scope Adapter, it is handled

differently, since it is the only Adapter that stores References. With element in the
following explanation we mean the data entry in the Binding Scope referenced by the
Qualifier used together with the Binding Scope Adapter

1. If the element did never receive a value or if neither its current value nor the value
that should be written into the element are References, the new value is written
as it is (line 28). This case occurs whenever Connectors that replace References
by their values are used in a Binding.

2. This is also done if the new value is a Reference, while the old value of the element
was not (line 30). A situation when this case applies could be a Connector that
only sometimes produces References.

1 input {
2 @temp <- $value
3 value -> @temp
4 }

Listing 5.13: Binding Scope Aliasing

3. If, however, the current value of the element is a Reference and the new value
is a primitive value, instead of overwriting the element with the new value, the
Reference is asked to write the new value to its underlying Adapter. (line 32). This
case is necessary to realize the typical aliasing functionality of the Binding Scope.
The Iteration concept (see section 5.1.3) makes heavy use of this to backtrack the
Entry and Key Adapter values to their original Source Adapter. Another example
is shown in listing 5.13. Here $value is aliased with @temp. When @temp is written
by value it already stores a Reference to $value.

4. If both the current and new value of the element are References, we need to
further decide whether those two References point to Adapter of the same type
(line 35).

52

5.1. Core Binding Concepts

1 @temp <- abortIfCondition <- $foo
2 @temp <- abortIfNotCondition <- $bar
3 ... -> @temp

Listing 5.14: References in Binding Scope Overwriting Each Other

a) If that is the case, the old Reference is overwritten by the new Reference
(line 36). A use case where this condition applies is shown in 5.14. Here,
based on a condition, References to different attributes of the Presentation
Model are written into the same Binding Scope Adapter.

1 @foo <- $value
2 @bar <- value
3
4 @bar <- @foo

Listing 5.15: Aliasing two Adapter

b) If the two types, however, are different, the element is not overwritten, but
the underlying value of the new Reference is written into the underlying
Adapter of the current Reference (line 38). An example why this behavior
is necessary is shown in listing 5.15. Here different Adapter are aliased.

5. The last case is where we only know that currentValue is a Reference and that
the new value neither is primitive nor a Reference (line 42). There is at least one
situation where this can happen. If the element acts as the source of an Iteration
and that Iteration initially iterates an empty collection, the Adapter stores a single
Reference pointing to that collection. If now elements are added to the collection,
the new value is no longer a Reference, but a list of References of the same type.
If more complex objects are iterated, there might be an arbitrary structure of
References.

53

5. View Data Binding Concepts

5.1.2.3. Binding Scope

The Binding Scope is an artificial third Data Target that should intuitively be seen
between Presentation Model and View Mask. It is a hierarchical data structure that
exactly follows the system of Scopes. When the Binding Scope Adapter that is always
written together with a Qualifier is used within the Binding of a Scope that Qualifier
becomes visible to all descendant Scopes.

1 div#first {
2 @foo <- ...
3 div#second {
4 ... -> @foo
5 @bar <- ...
6 }
7 div#third {
8 ... -> @foo
9 @bar <- ...
10 }}

Listing 5.16: Binding Scope Example

In listing 5.16 there are three Scopes from lines 1 to 10, 3 to 6 and 7 to 10. We call
these Scopes the first, second and third Scope. The Binding Scope Adapter, which we
denote with the Prefix @, is used multiple times, particularly with the two Qualifiers
foo and bar. Since foo was used in line 2 inside the first Scope that has the second
and third Scope as its children, the references to foo in line 4 and 8 all point to the
same attribute of the Binding Scope. The references in line 5 and 9, on the other
hand, reference different attributes of the Binding Scope, although they use the same
Qualifier bar. This is because they both introduce a new Qualifier that was never used
in any of their ancestor Scopes.
There is a simple recursive top-down algorithm that renames Qualifiers of Binding

Scope Adapter so that sameQualifiers always reference the same attribute of the Bind-
ing Scope. This algorithm demonstrates how the visibility of Binding Scope Adapter
Qualifiers is resolved. It is shown in listing 5.17 with pseudo JavaScript code.

1 global count = 1
2 disambiguate(scope, {})
3
4 function disambiguate(scope, assignMap) {
5 for (var qualifier in scope.getBindingScopeQualifiers()) {
6 if(qualifier not in assignMap) {
7 assignMap[qualifier] = "t" + count++
8 }
9 rename(qualifier).to(assignMap[qualifier])
10 }
11
12 for (child in scope.getChildren()) {
13 disambiguate(child, assignMap.clone())
14 }}

Listing 5.17: Binding Scope Disambiguation Algorithm

54

5.1. Core Binding Concepts

To show how the algorithm operates on the example from listing 5.16 we first vi-
sualize it as a tree of Scopes in figure 5.2. Every Scope in the tree contains a set of
Binding Scope Adapter Qualifiers used inside that Scope.

Figure 5.2.: Scope Tree from Listing 5.16

Disambiguate is initially called with div#first and an empty assignMap. In the
first for loop from lines 5 to 10 the entry {"foo", "t1"} is added to assignMap, count
increased by one and foo inside div#first renamed to t1. The second for loop from
lines 12 to 14 makes two recursive calls for div#second and div#third, each time
with a copy of assignMap. In both calls foo is again renamed to t1, since it is already
in assignMap and bar is renamed to t2 and t3 respectively. Figure 5.3 shows what the
tree looks like after the algorithm is finished.

Figure 5.3.: Scope Tree from Listing 5.16 After Disambiguating Qualifiers

We introduced the Binding Scope for three reasons.
1. It allows to structure the Binding Specification more flexibly. By factoring out
recurring Connector Chains into a parent Scope, less code has to be written.
Also it allows breaking long Bindings into multiple shorter ones.

2. Without it would be only possible to realize binding different view elements with
artificial attributes in the Presentation Model. Since the associated element of
a View Mask Adapter is defined by its Scope, it is impossible to cross-reference
another element of the View Mask there. If for instance a button should be active
only if a text box is filled, the information whether the text box is empty cannot
be retrieved inside the Scope that selects the button. Listing A.2 in the appendix
shows how this can be solved by utilizing the Binding Scope.

3. It nicely fits together with the concept of Iteration (see section 5.1.3). There Entry
and Key need to be provided somehow and they can both easily be stored inside
the Binding Scope without introducing a new concept.

55

5. View Data Binding Concepts

5.1.3. Iteration
A common requirement for user interfaces is to repeat certain parts for each element
in a collection. We call the concept that realizes this Iteration. Hiding or displaying
parts of the template can be seen as Iteration, too. It just means that one part is
repeated one or zero times.
An Iteration has a part of the Template DOM Fragment and its associated Binding

Specification as its input. The Iteration implicitly defines a Binding between the collec-
tion that is iterated and their corresponding DOM Fragments and Bindings that result
from iterating the Template DOM Fragment and Binding Specification respectively.
The concept is particularly challenging because it combines many different function-
alities. It is the only concept that manipulates both the Template DOM Fragment and
the Binding Specification.
An Iteration needs to provide a way for accessing the currently iterated element and

its key. In the case of conditionally displaying or hiding parts of the Template DOM
Fragment, this information is useless, since there is no iterated element that could be
referenced. We therefore define the element in such cases to always be true and the
key to always be 0.

Iteration Syntax

Since no framework we examined in chapter 3 allows to define View Data Binding
separately, they all include Iteration with special tags in the Template DOM Fragment.
This, however, is not an option for us, since Iteration clearly is not a concern of the
View Mask, but of the Binding Specification. We considered several different options
of denoting Iteration.

1. As a special Iteration Adapter

2. As an Adapter that manipulates the DOM Fragment

3. As a special Connector

4. As an own construct similar to Scopes

5. As a Pseudo-Selector attached to Selectors

6. As additional information to the Selector of a Scope

Consider the example of a list of names that is stored in the names attribute of the
Presentation Model. The goal is to bind an unordered HTML list to the list of names.
The Template DOM Fragment for this task is shown in listing 5.18. Listing 5.19 shows
what the various options could look like in a Binding Specification.

1 <div id="template">
2 <!-- Iteration BEGIN -->
3 <ul id="names">
4 <li class="name">
5
6 <!-- Iteration END -->
7 </div>

Listing 5.18: Example of a Template DOM Fragment for Iteration

56

5.1. Core Binding Concepts

1 // 1. As a special Iteration Adapter
2 li {
3 each(@name) <- $names
4 text <- @name
5 }
6
7 // 2. As an Adapter that manipulates the DOM Fragment
8 ul {
9 html <- each("li") <- $names
10 li {
11 text <- ???
12 }
13 }
14
15 // 3. As a special Connector
16 li {
17 text <- each <- $names
18 }
19
20 // 4. As an own construct similar to Scopes
21 iterate (@name <- $names) {
22 li {
23 text <- @name
24 }
25 }
26
27 // 5. As a Pseudo-Selector attached to Selectors
28 li:each(@name <- $names) {
29 text <- @name
30 }
31
32 // 6. As additional information to the Selector of a Scope
33 li (@name: $names) {
34 text <- @name
35 }

Listing 5.19: Different Options of Iteration in Binding Specification

57

5. View Data Binding Concepts

One important observation that can be made here is that Iteration creates a region
very similar to Scopes. Therefore the first three options fail to express Iteration ap-
propriately because they just try to include it inside Bindings. These solutions all have
in common that they do not prevent specifying multiple Iterations within the same
region. For instance there could be another line like

html <- each("li") <- $otherNames
after line 9. Semantically this does not make sense because it would conflict with

the Iteration already there. The syntax should intuitively prevent such cases by letting
Iteration create a syntactical region.
In addition, all options 1 to 3 fail to satisfy the definitions and restrictions for Adapter

and Connectors. In section 5.1.2.1 we defined that an Adapter may only modify at-
tributes of its associated element, but not its structure. This would be violated by op-
tions 1 and 2. Connectors, on the other hand, do by our definition from section 5.1.2.2
not have an associated element and are side effect free. This, in turn, is disregarded
by options 2 and 3.
On first sight, options 4 to 6 seem to be very similar. The problem with option 4 is

that the iterated element is not attached to the Iteration. This means that there could
be Selectors inside the Iteration that refer to unrelated elements of the Template DOM
Fragment, such as tags nested inside one another or incoherent elements. Option 5
tries to mimic CSS pseudo-classes, but fails the analogy, since in CSS, it is always
allowed to add more selectors after a selector.
We therefore decided to employ option 6. It creates an own syntactical region that

is directly associated with the iterated element, but is not part of the Selector. It is
intuitively understood and requires little amounts of code. To include it, we rework
grammar 5.1 for Scopes into grammar 5.5

Scope← Selectors Iteration? "{" ScopeBody∗ "}" |
Selectors Iteration

Selectors← Selector ("," Selector)∗

ScopeBody← Scope | Binding

Grammar 5.5: Syntax for Scope with Iteration

The differences are that it is now possible to add an Iteration after the Selectors of a
Scope and that the curly brackets may be dropped if no ScopeBody is present. Finally,
we still need to define the non-terminal symbol for Iterationwhich is done by grammar
5.6. It uses the symbols Entry, Key and Collection, which we only added to make it
easier to comprehend.

This grammar allows three different ways of writing an Iteration, while the first
is designed for conditional display (When). Each of the three can also be used for
repeating elements (Each) with designated optional spots for both Entry (first) and
Key (second).

58

5.1. Core Binding Concepts

Iteration← "(" (Entry ("," Key)? ":")? Collection ")"
Entry← Adapter
Key← Adapter
Collection← Adapter

Grammar 5.6: Iteration

1. (Adapter)

2. (Adapter: Adapter)

3. (Adapter, Adapter: Adapter)

Listing 5.20 shows a more complex example of how Iterationsmay be used inside the
Binding Specification. It again uses the Template DOM Fragment from listing 5.18.
Line 3 would semantically most probably be an example of using only one Adapter to
realize When, while line 5 uses both Entry and Key Adapter.

1 @showNames <- notEmpty <- $names
2 #names (@showNames)
3
4 li (@name, @index: $names) {
5 text <- @name
6 attr:id <- @index
7 }

Listing 5.20: Iteration Example

Iteration Semantics

It is assumed that the Paths yielded by the last Adapter inside an Iteration can always
be converted to a collection (realizes Each) or a Boolean value (expresses When). It
can be seen as the input of the Iteration, and in this context we call it Source Adapter.
All other Adapter need to be Binding Scope Adapter. Since the grammar can not know
which Prefix the Binding Scope Adapter uses, every implementation needs to validate
this at runtime. We call these two Entry and Key Adapter respectively.
An Iteration expands both the Template DOM Fragment and the Binding Specifica-

tion, depending on the values that are retrieved from the Source Adapter. For each
repetition of the Binding Specification the correlating collection items and their keys
are injected into the Entry and Key Adapter. Since the Binding Scope Adapter is hier-
archical (see section 5.1.2), they can reference different values in each repetition.

59

5. View Data Binding Concepts

In case of When, the Template DOM Fragment and the Binding Specification are
modified as follows.

• If the Source Adapter yields true ...
... the Template DOM Fragment is unchanged
... the Iteration is removed from the Scope. The Scope itself remains unchanged
regarding its Selector, Bindings and child Scopes. If the Entry or Key Adapter
were used, their values are initialized with true and 0 respectively inside that
Scope.

• If the Source Adapter yields false ...
... all elements that are matched by the Selector of the iterated Scope are re-
moved from the Template DOM Fragment.

... the Scope is completely removed from the Binding Specification including its
Bindings and children.

In case of Each, the Template DOM Fragment and the Binding Specification are
modified as follows.

• The selected elements are removed from the Template DOM Fragment and the
Scope is removed from the Binding Specification as if the Iteration was a When
yielding false. The parts that were removed and the locations where they were
removed need to be remembered for the next steps.

• For each element in the collection retrieved from the Source Adapter ...
... insert that part of the Template DOM Fragment which was selected after all
previously inserted parts or if it is the first part, at the old position.

... create a Selector which matches only the part added in the previous step and
insert a new Scope after all previously inserted Scopes or if it is the first one,
at the old position. The new Scope is equal to the old one except that it has a
different Selector and no Iteration. It is assumed that it is always possible to
find a new Selector. In HTML for instance this is unproblematic, since CSS
includes pseudo-classes that allow to select the n-th child of a tag.

Obviously, the challenge of Iteration does not lie in initially modifying both the Tem-
plate DOM Fragment and the Binding Specification to eliminate all Iterations, but in
keeping track of the changes of the Source Adapter. If the underlying collection or
the truth value changes, the Template DOM Fragment and the Binding Specification
have to be modified to reflect those changes. We will show an efficient way to do this
in chapter 6. Although we did not show an example for it, Iterations may be nested,
which further exacerbates the problem.
To make the semantics of Iterationmore clear we expand our initial example with its

Template DOM Fragment from listing 5.18 by assuming that $names yields the array
["Alice", "Bob", "John"]. Listing 5.21 shows the Template DOM Fragment after it
was expanded by the Iteration and listing 5.22 the Binding Specification that emerged
from lines 33 to 35 of listing 5.19.

60

5.1. Core Binding Concepts

1 <div id="template">
2 <!-- Iteration BEGIN -->
3 <ul id="names">
4 <li class="name">
5 <li class="name">
6 <li class="name">
7
8 <!-- Iteration END -->
9 </div>

Listing 5.21: Expanded Template DOM
Fragment

1 li:nth-child(1) {
2 @name <- select0 <- $names
3 text <- @name
4 }
5 li:nth-child(2) {
6 @name <- select1 <- $names
7 text <- @name
8 }
9 li:nth-child(3) {
10 @name <- select2 <- $names
11 text <- @name
12 }

Listing 5.22: Expanded Binding Speci-
fication

In lines 2, 6 and 10 of listing 5.22 Bindings are added to illustrate how the collection
items are injected into the Entry Adapter. This, however, does not need to happen
explicitly, since it is specified as part of the Iteration concept. It should be noted that
select0, select1 and select2 store a Reference inside @name. This means that it is
possible to use the Entry Adapter as the Data Sink of a Binding (see section 5.1.2).
Although the syntactical representation of Iteration allows to easily express complex

logic, semantically there are a few caveats.

1. The part of the Template DOM Fragment that is repeated by the Iteration is de-
fined by the Selector of the Scope that comprises the Iteration. This is important
to note, since almost all other frameworks iterate all descendants of the selected
elements, while we repeat the descendants and the selected element. The first
option is easier to implement, since this way there is always a reference element
even if there are no elements in the Iteration. We however want to provide a more
powerful solution that also allows to define Iterations that can be placed next to
each other without the necessity of wrapper elements.

2. An element from the Template DOM Fragment may be matched by the Selector
of a Scope that is not and by another that is iterated. All Bindings inside the non-
iterated Scope are then applied as if they would occur inside the iterated Scope,
but they do not have access to the Entry and Key Adapter. Further, this means
that conflicting references need to be resolved before merging.

3. If the Selector of an iterated Scope matches more than one element inside the
Template DOM Fragment, each of those elements is iterated individually.

4. It is not allowed that the same element inside the Template DOM Fragment is
matched by the Selectors of two or more Scopes which all have an Iteration. We
defined that the order of Bindings and Scopes is semantically irrelevant, but in
such a case a decision about the order of Iterations inside the Template DOM
Fragment would have to be made. The problem, however, can be solved by mul-
tiplying the relevant part of the Template DOM Fragment, selecting it explicitly
through the Selectors of the iterated Scopes and, thus, making the order of Iter-
ations explicit.

61

5. View Data Binding Concepts

5. As we have explained in section 5.1.2, using a Binding Scope Adapter makes its
Qualifier visible to all descendant Scopes. Since Iteration creates new Scopes
during the process of expansion, all references to Entry and Key Adapter are
individual within a Scope created by expansion. If now the same Qualifier as in
the Entry or Key Adapter was used in an ancestor of the Scope that is iterated,
it would make all references to Entry and Key point to the same elements. This
would inevitable lead to conflicting Bindings and we therefore assume that the
Qualifiers used for the Entry and Key Adapter never occur in any ancestor of the
Scope that is iterated.

6. The Source Adapter of an Iterationmay be a PresentationModel or View Adapter.
In the latter case the Selector of the Scope that encloses the iterated Scope de-
fines its associated element. If there is no such Scope inside the same Group of
the Binding Specification, the use of a View Adapter is not allowed.

62

5.2. Core Structure Concepts

5.2. Core Structure Concepts

In this section we introduce the Core Structure Concepts Identification and Insertion.
In short, Identification allows to label certain parts of a Binding Specification for ref-
erence and Insertion to plug-in external content not covered by other concepts.

5.2.1. Identification

With Identification it is possible to name certain parts of a Binding Specification. It is
a Structure Concept because software is typically structured into components, where
one entails the Template DOM Fragment, another the Presentation Model and yet an-
other the Binding Specification. This means that we need to provide a mechanism that
allows mapping the Binding Specification to its corresponding Template DOM Frag-
ment and Presentation Model. One could argue that this could be done with the name
of the file that comprises the Binding Specification. Especially in web environments,
however, the number of files is typically reduced to a minimum by compressing all
content of a certain type, for example all Binding Specifications into one big file.

Identification Syntax

In section 5.1.1 we have shown how Scopes build a tree. Scope and Group, which
represents Identification, are in fact special Blocks. This means that wherever a Scope
is syntactically allowed, there is as well a Group, and vice versa. We first rework
the latest version of grammar 5.5 for Scopes so that it recursively references Blocks
instead of Scopes. In addition, it makes sense to define Binding Specification and
Block at this point with grammar 5.7. Listing 5.23 shows a Binding Specification that
makes use of Identification several times. It also shows how Groups may be nested.

BindingSpecification← Blocks
Blocks← (Block)∗

Block← Group | Scope
Group← Identification "{" Blocks"}"
Identification← "@binding " GroupIdentifier
GroupIdentifier← [a-zA-Z_]([a-zA-Z0-9_-])∗

Scope← Selectors Iteration? "{" ScopeBody∗ "}" |
Selectors Iteration

Selectors← Selector ("," Selector)∗

ScopeBody← Block | Binding

Grammar 5.7: Syntax of Binding Specification

63

5. View Data Binding Concepts

1 @binding foo {
2 div {
3 ...
4 }
5 @binding bar {
6 span {
7 ...
8 }
9 }
10 }
11 @binding baz {
12 ...
13 }

Listing 5.23: Identification Example

Identification Semantics

Identification does not alter the meaning of a Binding Specification. It is assumed that
the Group Identifier is unique in one level of the subtree built of Groups. If Groups
are nested, they are referenced with dot-notation. This means that there might be one
Group referenced with foo and another with bar.foo.
References to Groups always reference the Binding Specification at a state before

its Iterations were expanded as described in section 5.1.3.

5.2.2. Insertion
The Template DOM Fragment is a static input to the View Data Binding. This means
that after it is connected to the Presentation Model through the Binding Specification
it cannot be changed by something that is not aConcept. In complex applications, how-
ever, the user interface which is represented by the Template DOM Fragment often
does not reside in a single component. Instead, there may be a hierarchy of compo-
nents and children need a designated spot to render their part of the user interface
into the Template DOM Fragment of their parents. Figure 2.3, which we used ear-
lier to introduce ComponentJS in section 2.1.3, shows such a user interface where the
same login dialog is plugged four times into a container component.
We call the designated spot a Socket and assume that all content plugged into it,

is managed externally. In particular, it means that it cannot be manipulated by the
Binding Specification.

Insertion Syntax

We allow adding an additional Label to a Scope, which turns its matched element
into a Socket. Since the Binding Specification may not reference content plugged
into the Socket, this Scope must not have children and be always empty. The new
syntax elements are defined with grammar 5.8, which reworks parts of grammar 5.7
for Binding Specifications. Listing 5.24 shows in lines 2 and 4 how the new syntax
element can be used inside a Binding Specification.

64

5.2. Core Structure Concepts

Scope← Selectors Iteration? "{" ScopeBody∗ "}" |
Selectors (Iteration | Label)

Label← "::" LabelIdentifier
LabelIdentifier← [a-zA-Z_]([a-zA-Z0-9_-])∗

Selectors← Selector ("," Selector)∗

ScopeBody← Block | Binding

Grammar 5.8: Syntax of Scope with Insertion

1 @binding foo {
2 #bar::baz
3 div (@person: $people) {
4 .qux::quux
5 }
6 }

Listing 5.24: Insertion Example

Insertion Semantics

Adding a Label to a Scope creates a Socket. We assume that the Selector of that Scope
exactly matches one element from the Template DOM Fragment whose children are
removed.
Semantically Sockets do not affect a Binding Specification, but we assume that there

is an interface which allows to request a Socket. Sockets are identified with dot nota-
tion including all Group Identifiers of the Binding Specification. In the example from
listing 5.24 the Socket from line 2 would be referenced by foo.baz and the one from
line 4 by foo.quux.
A Socket comprises a reference to its associated part of the Template DOM Frag-

ment. Due to the concept of Iteration this part might be missing or be present multiple
times. In the latter case each instance of the Socket also contains information about
the Entry and Key which lead to its creation. Since Iterations may be nested, this
information needs to be provided for every Iteration that occurred in any ancestor
Scope.
Apart from requesting the current instances of a Socket, we further assume that

another interface allows to register for changes of Socket instances. This means that
it must be possible to register an observer that is notified whenever an instance of a
Socket is created or destroyed through Iteration.
Last, the Socket provides a way to insert content into its associated part of the Tem-

plate DOM Fragment. This content is guaranteed to be never modified by the View
Data Binding defining the Socket.

65

5. View Data Binding Concepts

5.3. Convenience Binding Concepts
After introducing all of our Core Concepts we now turn to Convenience Concepts for
Binding. They all have in common that they make it easier to express complex facts
and render our Concepts more desirable to work with.
To decide which Convenience Concepts to include we examined typical use cases

for View Data Binding and how they would be realized using Core Concepts only. We
then identified patterns that were recurring and cumbersome to implement. When-
ever possible, we converted those patterns into independent Convenience Concepts,
primarily to reduce the amount of View Data Binding code.

5.3.1. Two-Way Binding
It is often required to bind values in two directions. For example, the value of a text box
in the user interface is bound to an attribute of the PresentationModel so that a change
is reflected in the other end, no matter where it was made. In such instances it would
be necessary to write two Bindings with opposing Segment Binding Operators. To
halve the amount of code in such cases we introduce the Concept of Two-Way Binding
that adds a third possibility to write Binding Operators.

Two-Way Binding Syntax

We rework grammar 5.4 for Bindings into grammar 5.9. It adds a new terminal symbol
expressing a Two-Way Binding to both, the Segment Binding Operator (Sbo) and the
Connector Binding Operator (Cbo).

Binding← Adapter Sbo ConnectorChain Sbo Adapter |
Adapter Sbo Adapter

ConnectorChain← Connector (Cbo Connector)∗

Sbo← "<-" | "->" | "<->"
Cbo← "<-" | "->" | "<->"

Grammar 5.9: Syntax of Two-Way Binding

Listing 5.25 shows examples of how the new Binding Operators can be used inside
a Binding. Again to keep it simple, the grammar does not prevent ill-formed Bindings,
such as the one in line 4.

1 Adapter <-> Adapter
2 Adapter <-> Connector <-> Adapter
3 Adapter <-> Connector <-> Connector <-> Adapter
4 Adapter <- Connector <-> Connector -> Adapter

Listing 5.25: Two-Way Binding Examples

66

5.3. Convenience Binding Concepts

Two-Way Binding Semantics

A Binding using the Two-Way Binding Operator expresses the same semantics as two
Bindings using opposing One-Way Binding Operators. The two replacing Bindingsmay
appear in any order, since the order of Bindings is irrelevant to their semantics. List-
ings 5.26 and 5.27 show an example of how a Binding Specification can be converted
into a semantically equal version not using Two-Way Bindings. Since the algorithm
performing this conversion is trivial, we do not show it explicitly.

1 div {
2 input.name {
3 value <-> $name
4
5 }
6 input.age {
7 value <-> convert <-> $age
8
9 }
10 }

Listing 5.26: Before Conversion

1 div {
2 input.name {
3 value -> $name
4 value <- $name
5 }
6 input.age {
7 value -> convert -> $age
8 value <- convert <- $age
9 }
10 }

Listing 5.27: After Conversion

5.3.2. One-Time Binding
In addition to the Two-Way Binding Operator , we introduce the One-Time Binding
Operator that allows to specify a Bindingwhich is executed exactly once. This allows a
more performant implementation of such Bindings, since their Adapter do not need to
be watched for changes. Another use case of this concept is to declare Binding Scope
Adapters and assign them an initial value as described in section 5.1.2. Examples for
this are shown in listings 5.11 and A.2.
We want to note that this Concept is inspired by the View Data Binding functionality

of Windows Presentation Foundation, which we examined in section 3.1.3.

One-Time Binding Syntax

We rework grammar 5.9 into grammar 5.10 for Bindings and add the two additional
terminal symbols <∼ and ∼> to both Segment Binding Operator (Sbo) and Connector
Binding Operator (Cbo). Listing 5.28 shows syntactically valid examples of Bindings
using the One-Time Operator. Line 4, however, shows a Binding which is semantically
wrong.

1 Adapter ∼> Adapter
2 Adapter <∼ Connector <∼ Adapter
3 Adapter ∼> Connector ∼> Connector ∼> Adapter
4 Adapter <∼ Connector ∼> Connector <-> Adapter

Listing 5.28: One-Time Binding Examples

67

5. View Data Binding Concepts

Binding← Adapter Sbo ConnectorChain Sbo Adapter |
Adapter Sbo Adapter

ConnectorChain← Connector (Cbo Connector)∗

Sbo← "<-" | "->" | "<->" | "<∼" | "∼>"
Cbo← "<-" | "->" | "<->" | "<∼" | "∼>"

Grammar 5.10: Syntax of One-Time Binding

One-Time Binding Semantics

As with any other Binding Operator, the One-Time Binding Operator may not be mixed
with other Binding Operators. A Binding using it therefore has the same semantics as
if it would use a One-Way Binding Operator indicating the same direction. The only
difference is that this Binding is only propagated once.
The Concept can be derived by either using an Aborter (doOnce) or a Connector that

always returns the value it first received (returnFirst).

doOnce Remembers if it has ever produced an output. If not, its output is equal to its
input. If it has produced an output before, it acts as an Aborter as described in
section 5.1.2.

returnFirst Remembers if it has ever produced an output and what that output was.
If the Connector is executed for the first time, it just returns its input and for any
subsequent call again returns the input of its first execution.

Any Binding can now be transformed by placing one of the two Connectors after
the Source Adapter of the Binding. Listings 5.29 and 5.30 illustrate this conversion.
To keep the example abstract, we use the non-terminals Adapter and Connector and
abbreviate them with A and C respectively.

1 A ∼> A
2
3
4 A <∼ A
5
6
7 A <∼ C <∼ A
8
9
10 A ∼> C ∼> A
11
12
13 ...

Listing 5.29: Before Conversion

1 A -> doOnce -> A
2 A -> returnFirst -> A
3
4 A <- doOnce <- A
5 A <- returnFirst <- A
6
7 A <- C <- doOnce <- A
8 A <- C <- returnFirst <- A
9
10 A -> doOnce -> C -> A
11 A -> returnFirst -> C -> A
12
13 ...

Listing 5.30: After Conversion

68

5.3. Convenience Binding Concepts

5.3.3. Resource Sequence

Resources are Adapter and with Resource Sequence we allow that multiple Adapter
are used as Data Source or Data Sink. This way Connectors may obtain their inputs
from multiple sources and produce outputs for more than one sink.

Resource Sequence Syntax

To implement Resource Sequences we modify the latest version of grammar 5.10 for
Bindings into grammar 5.11 by simply replacing every Adapter with a Resource Se-
quence. The Resource Sequence itself is nothing but a list of Adapter separated by
commas.

Binding← ResourceSequence Sbo ConnectorChain Sbo ResourceSequence |
ResourceSequence Sbo ResourceSequence

ResourceSequence← Adapter ("," Adapter)∗

ConnectorChain← Connector (Cbo Connector)∗

Sbo← "<-" | "->" | "<->" | "<∼" | "∼>"
Cbo← "<-" | "->" | "<->" | "<∼" | "∼>"

Grammar 5.11: Syntax of Resource Sequence

Resource Sequence Semantics

To define the meaning of Resource Sequences we need to differentiate between two
different cases. One of them considers Bindings that do not include a Connector Chain,
and the other such that do.

Without Connector Chain The semantics of the Binding

@in1, @in2, ..., @inN -> @out1, @out2, ..., @outM

is equal to the semantics of the following set of Bindings

B = {b|b = @ini -> @outj ∧ i = j ∧ 1 ≤ i ≤ N ∧ 1 ≤ j ≤M}

Obviously |B| = max(N,M). This means that if there are more Data Source than Data
Sink Adapters they will be dropped. Also, if the opposite is true, the superfluous Data
Sink Adapters will never receive a value through that Binding. Assuming that N = M ,
above Binding could be transformed to the set of Bindings shown in 5.31.

69

5. View Data Binding Concepts

1 @in1 -> @out1
2 @in2 -> @out2
3 ...
4 @inN -> @outM

Listing 5.31: Transformation of Resource Sequence to Core Concepts

With Connector Chain It is irrelevant if only one or more Connectors are in the Con-
nector Chain, since a Connector Chain could always be expressed by a single Connec-
tor (see section 5.1.2). We therefore only illustrate the semantics of cases with one
Connector.
Intuitively, instead of receiving one value during Propagation a Connector receives

a list of input values and may also produce a list of output values. There are three
cases that we need to consider separately.

1. @in1, @in2, ..., @inN -> connector -> @out
There is aResource Sequence as the input of theConnector, but a singleResource
as the output.

2. @in -> connector -> @out1, @out2, ..., @outN
The input is a single Resource, while the output is a Resource Sequence.

3. @in1, @in2, ..., @inN -> connector -> @out1, @out2, ..., @outM
Both input and output of the Connector are Resource Sequences.

For the first case we need to assume that there are Adapter $coll1, $coll2 ...
$collN which yield lists of length N , while the values of the list items are irrelevant.
Also, we assume that there are the Connectors get1, get2, ... getN, which pick the
N -th item from a list and preserve its reference as described in section 5.1.2. The
Binding can now be transformed as shown in listing 5.32.

1 @temp1 <- get1 <- $collN
2 @in1 -> @temp1
3
4 @temp2 <- get2 <- $collN
5 @in2 -> @temp2
6
7 ...
8
9 @tempN <- getN <- $collN
10 @inN -> @tempN
11
12 $collN -> connector -> @out

Listing 5.32: Transformation of Resource Sequence to Core Concepts (Case 1)

The second case is more simple and makes use of the same Filters get1, get2, ...,
getN. The Binding can be transformed into a set of Bindings as shown in listing 5.33.

70

5.3. Convenience Binding Concepts

1 @in -> connector -> get1 -> @out1
2 @in -> connector -> get2 -> @out2
3 ...
4 @in -> connector -> getN -> @outN

Listing 5.33: Transformation of Resource Sequence to Core Concepts (Case 2)

Case 3 then is just a combination of the previous two. For the sake of completeness
it is shown in listing 5.34.

1 @temp1 <- get1 <- $collN
2 @in1 -> @temp1
3
4 @temp2 <- get2 <- $collN
5 @in2 -> @temp2
6
7 ...
8
9 @tempN <- getN <- $collN
10 @inN -> @tempN
11
12 $collN -> connector -> get1 -> @out1
13 $collN -> connector -> get2 -> @out2
14 ...
15 $collN -> connector -> getN -> @outN

Listing 5.34: Transformation of Resource Sequence to Core Concepts (Case 3)

Due to the transformation, the interpretation of the output and input values of Con-
nectors in Bindings comprising Resource Sequences changes. In the first case the
Connector receives a list of input values and its single output value is assigned to @out,
no matter if it is a list or not. In the second case, however, the Connector receives a
single input and is expected to produce a list as its result which is then distributed to
the output Resource Sequence. This means that the function of a Connector must be
specifically designed to work with a certain combination of Resource Sequences.
Listing 5.35 shows some use cases of the Concept.

1 @dirtyValue -> validate -> @sanitizedValue, @valueValid
2 @fullName -> split -> @firstName, @lastName
3 @time, @day -> makeDate -> @date
4 @boxFilled, @acceptChecked -> and -> @formValid
5 @num1, @num2, ..., @numN -> stats -> @sum, @average, @median

Listing 5.35: Use Cases for Resource Sequences

71

5. View Data Binding Concepts

Before concluding this section, we want to explain why we decided not to allow
Connector Sequences. Consider the following hypothetical example.

@a, @b, @c -> connectorA, connectorB -> @d, @e, @f

This Binding is highly ambiguous. It is unclear which of @a, @b or @c act as the inputs
of connectorA or connectorB. Also, it is not recognizable how to distribute the outputs
of the two Connectors to @d, @e or @f.
To achieve this, every Connector would have to specify exactly ...

... how many inputs and outputs are produced at most and at least.

... how many inputs and outputs are produced depending on the number of inputs
or outputs respectively.

... which number of inputs or outputs is preferred in case there are several options.

To avoid this complexity, which would also require a powerful algorithm to decide on
a matching, we decided to not include Connector Sequences. Furthermore they would
hinder maintainability and not increase expressiveness, since it is always possible to
split such a Binding into multiple ones. This makes the matching explicit and is much
easier to understand. One example of splitting the above example would be as follows.

@a -> connectorA -> @d, @e

@b, @c -> connectorB -> @f

5.3.4. Initiator
A Binding becomes active as soon as one of its Data Source Adapter notifies it that
its value has changed (see section 5.1.2). An Initiator is an Adapter that is not used
for reading or writing values, but only for initiating the Propagation of a Binding. It is
always attached to an Adapter and replaces that Adapter’s role as an Initiator.

Initiator Syntax

An Initiator could be theoretically attached to any Adapter in a Binding. At the mo-
ment, there are only Data Source and Data Sink, but with the introduction of Param-
eters (see section 5.3.5) they might appear in other locations of a Binding as well.
To ensure that a Binding remains readable we decided that an Initiator may only be
attached to the Data Source and Data Sink.
Syntactically an Initiator is nothing but a Resource Sequence attached to another

Resource Sequence by a special Initiator Binding Operator. Both of these Resource
Sequences might consist of only one Adapter. To include the concept, grammar 5.11
for Bindings needs to be reworked into grammar 5.12. IRS is an abbreviation for
both Initiated Resource Sequence and Initiator Resource Sequence, while RS is the
shorthand for Resource Sequence. Listing 5.36 shows examples of how Initiators may
be used inside Bindings.

72

5.3. Convenience Binding Concepts

Binding← IRSleft Sbo ConnectorChain Sbo IRSright |
IRSleft Sbo IRSright

IRSleft← (RS "+>")? RS
IRSright← RS ("<+" RS)?
RS← Adapter ("," Adapter)∗

ConnectorChain← Connector (Cbo Connector)∗

Sbo← "<-" | "->" | "<->" | "<∼" | "∼>"
Cbo← "<-" | "->" | "<->" | "<∼" | "∼>"

Grammar 5.12: Syntax of Initiator

1 @i1 +> @a1 -> @a2
2 @a1 <- @a2, @a3 <+ @i1
3 @i1, @i2 +> @a1, @a2 <-> c <-> @a3, @a4 <+ @i3

Listing 5.36: Initiator Examples

Semantically it only makes sense to attach an Initiator to the Data Source of a Bind-
ing, but the grammar is not restricted to that to support Two-Way Bindings. Since Data
Sink Adapter never trigger the Propagation of a Binding, an Initiator used there just
has no effect and is redundant.

Initiator Semantics

If an Initiator consists of a Resource Sequence, its semantics are as if the Binding was
written multiple times each time with one of the Adapter from the Resource Sequence
as their Initiator. If the Resource Sequence that an Initiator is attached to consists of
more than one Adapter, the Initiator applies to all elements. Therefore, we reduce our
explanation of the semantics to the case where neither Resource Sequence consists
of more than one Adapter.

Initiator +> DataSource -> ... -> DataSink

Intuitively, the Initiator and the Data Source Adapter are merged together into a
new Adapter which behaves like the Data Source Adapter. The only difference is that
Propagation is not triggered when the underlying value of the Data Source Adapter
changes, but when the underlying value of the Initiator Adapter changes.
We decided on this replace semantic instead of triggering Propagation for both Data

Source Adapter and Initiator to be as flexible as possible. If it should be required to add
the trigger instead of replacing it, the Data Source Adapter may always be duplicated
to the Initiator Resource Sequence.

Initiator, DataSource +> DataSource -> ... -> DataSink

Expressing an Initiator with the concepts already introduced can be easily done by
adding it to the Initiated Resource Sequence to initiate Propagation. To not alter the

73

5. View Data Binding Concepts

semantics of the Binding a Connector drop is added to remove the values read from
the Initiators. Listings 5.37 and 5.38 visualize the conversion.

1 @foo +> @bar ->
2 ... -> @baz
3
4 @i1, @i2, ..., @iN +>
5 @a1, @a2, ..., @aM ->
6 ... -> @t

Listing 5.37: Before Conversion

1 @bar, @foo -> dropSecond ->
2 ... -> @baz
3
4 @a1, @a2, ..., @aM,
5 @i1, @i2, ..., @iN ->
6 dropLastN -> ... -> @t

Listing 5.38: After Conversion

There are several use cases. One is inspired by Windows Presentation Foundation
(see section 3.1.3) which offers a feature to imperatively execute certain Bindings.
With an Initiator we can solve this by using a Presentation Model Adapter as an Ini-
tiator. If the value inside the Presentation Model is changed, the Binding starts to
propagate.
A more practical use case arises from the area of web development. It is often re-

quired that values are synchronized with the Presentation Model only if certain events
happen. For instance, if a user enters content into a text box, the value should be writ-
ten to the Presentation Model whenever a key is pressed or not until the text box loses
focus. To express this, assume that there is an Adapter called on that provides the
last event fired by an element from the View Mask. As its Qualifier it takes the type of
event. With this we could express the previous two cases as follows.

on:keydown +> value <-> $value

on:change +> value <-> $value

5.3.5. Parameter

With this concept we allow that both Adapter and Connectors may have Parameters,
which are Adapter. Thus, it is possible to configure the behavior of Adapter and Con-
nectors.

Parameter Syntax

Parameters are a comma-separated list of Adapter specified after another Adapter or
Connector enclosed in parentheses. Parameter may be positional or name-based. To
define themwe rework both grammar 5.2 for Adapter and grammar 5.3 for Connectors
into grammar 5.13. Listing 5.39 shows abstract examples of how to use Parameters
in Bindings. With these examples we want to make clear that positional and name-
based parameters may be mixed and that Adapter that are Parameter can again have
Parameter.

74

5.3. Convenience Binding Concepts

Adapter← AdapterId Parameters?
Connector← Id Parameters?
Parameters← "(" Parameter ("," Parameter)∗ ")"
Parameter← Adapter | Id "=" Adapter
AdapterId← [@$#%&] [a-zA-Z_] ([a-zA-Z0-9_-])∗ |

[a-zA-Z_] ([a-zA-Z0-9_])∗

(":" [a-zA-Z_] ([a-zA-Z0-9_-])∗)?
Id← [a-zA-Z_] ([a-zA-Z0-9_])∗

Grammar 5.13: Syntax of Parameter

1 @a(@b) -> connector(@c) -> @d(@e)
2 @a(@b, @c) -> connector(d = @e) -> @f(@g, @h)
3 @a(b = @c) -> connector(@d(@e)) -> @d(e = @f)
4
5 @a(b = @c, d = @e) -> @f(g = @h, i = @j)
6 @a(@b, c = @d, @e, f = @g) -> @h(i = @j, @k, l = @m, @n)
7 @a(@b(@c), d = @e(f = @g)) -> @h(i = @j(@k))

Listing 5.39: Parameter Examples

Parameter Semantics

We first convert all positional Parameter into name-based Parameter, with their index
as their name. The set of Parameters can then always be converted into one value,
containing all Parameters as an associative array. We, therefore, only show how the
concept is derived for the case that there is a single positional parameter.
Every Adapter defines the logic that is executed when a value is written to the

Adapter (see section 5.1.2). Therefore, this logic could as well set an internal con-
figuration of the Adapter instead of writing to its Data Target. We assume that the
Connector makeParam is able to add information to a value in such a way that the
Adapter recognizes it as a configuration Parameter instead of a value that should be
written to the Data Target.
We can then resolve Parameters for Adapter in a bottom-up fashion by passing them

to the Adapter explicitly. To illustrate this process consider the Binding from listing
5.40 which can be transformed into a set of Bindings as in listing 5.41.

1 @a(@b(@c(...))) -> @d

Listing 5.40: Before Conversion

1 ...
2 @c -> makeParam -> @b
3 @b -> makeParam -> @a
4 @a -> @d

Listing 5.41: After Conversion

75

5. View Data Binding Concepts

For Connectors the process is different and needs to take special care about Con-
nector Chains because they have to be split up into multiple Bindings. Consider the
example from listing 5.42 first. For the Connector it makes no difference if @b is writ-
ten as a Parameter or as an additional item of the input Resource Sequence. This
means that the Binding can be transformed into the Binding from listing 5.43.

1 @a <- c(@b) <- @c

Listing 5.42: Before Conversion

1 @a <- c <- @b, @c

Listing 5.43: After Conversion

Now for the more complex example of a Connector Chain where each Connector
has Parameters we only show a case with two Connectors in listing 5.44. The process
follows naturally if more than two Connectors are in the Connector Chain.

1 @a <- c1(@b) <- c2(@c) <- @d

Listing 5.44: Before Conversion

Since Connector Sequences are not allowed (see section 5.3.3), the process de-
scribed earlier does not work and the Binding needs to split into two parts as in listing
5.45. Now the same logic as earlier can be applied twice to arrive at the two Bindings
from listing 5.46.

1 @a <- c1(@b) <- @temp
2 @temp <- c2(@c) <- @d

Listing 5.45: Intermediate Step

1 @a <- c1 <- @b, @temp
2 @temp <- c2 <- @c, @d

Listing 5.46: After Conversion

If we look back at Initiators it becomes more clear now that they cannot be used
with Adapter which have the role of a Parameter. This restriction, however, can be
circumvented if the transformation is done manually because there every Adapter that
was a Parameter can be modified by an Initiator. Also, we would like to note that we
decided not to express Initiators as Parameters, since it would make them appear to be
relevant for both directions inside a Two-Way Binding. By placing them in a designated
location left or right of the Binding their role becomes more clear syntactically. Use
cases for Parameters include configuration and default values as shown in listing 5.47.

1 // Replace $text with correct localization
2 text <- i18n($lang) <- $text
3
4 // Decide whether HTML should be escaped
5 text(escapeHtml = $escapeHtml) <- $text
6
7 // Configuration parameter and default value
8 on:keydown(timeout = $waitMillis) +> value <-> $text($defaultText)

Listing 5.47: Parameter Use Cases

76

5.3. Convenience Binding Concepts

5.3.6. Expression

The goal of Expressions is to dramatically increase readability and usability of our
Concepts. As our examples of Bindings using Expressions and how they are expressed
by using just Core Concepts show, Expressions also greatly reduce the amount of code
that is necessary to express complex Bindings.

Expression Syntax

Syntactically Expressions are allowed wherever Adapter were possible until now with
the exception of the Entry and Key Adapter of an Iteration. This means that we need to
change the grammars 5.6 for Iteration, 5.12 for Initiators and 5.13 for Parameters to
include Expressions. Grammar 5.14 shows the relevant parts that have to be updated.

Iteration← "(" (Entry ("," Key)? ":")? Collection ")"
Entry← Adapter
Key← Adapter
Collection← Expr
...
Binding← IRSleft Sbo ConnectorChain Sbo IRSright |

IRSleft Sbo IRSright
IRSleft← (RS "+>")? RS
IRSright← RS ("<+" RS)?
RS← Expr ("," Expr)∗

...
Adapter← AdapterId Parameters?
Connector← Id Parameters?
Parameters← "(" Parameter ("," Parameter)∗ ")"
Parameter← Expr | Id "=" Expr

Expr← ...

Grammar 5.14: Syntax of Binding with Expression

The most basic Expressions are static values, numbers, regular expressions and
quoted string literals, which we all call Literals. Although we will not show their exact
grammar for reasons of shortness, their syntax should be very intuitive. Table 5.4
gives an overview of Literals.
Literals are the basic elements of an Expression. All other syntactical elements of an

Expression recursively structure one or more Literals. Before introducing the Parsing
Expression Grammar for Expression, we want to give a qualitative overview of the
remaining Expression that are supported with table 5.5.

77

5. View Data Binding Concepts

Name Description Examples
Static Value true

false
null
NaN
undefined

Number Numeric values sup-
porting signs, deci-
mal points and expo-
nents. Further hex-
adecimal, octal and
binary numbers are
possible.

+314.592654e-2
0xABAD1DEA
0b101010

Regular Expres-
sion

Special string literal,
that requires less es-
caping

/[a-z]/
/\[A-Z0-9]+@[A-Z0-9]+[̇A-Z]2,4\b/

Quoted String Might comprise only
ASCII characters or
escapes for UTF-8 en-
coded characters

"foo"
’foo\tbar’
"25\uE282AC"

Table 5.4.: Overview of Literals

78

5.3. Convenience Binding Concepts

N
am

e
Sy
nt
ax

E
xa
m
pl
es

C
on
di
tio
na
l

Ex
pr
es
si
on

?
Ex
pr
es
si
on

:
Ex
pr
es
si
on

Ex
pr
es
si
on

?:
Ex
pr
es
si
on

$c
he
ck
ed

?
$p
as
sw
or
d
:

"*
**
**
"

$n
am
e
?:

"P
le
as
e
en
te
r

na
me
"

Lo
gi
ca
l

!
Ex
pr
es
si
on

Ex
pr
es
si
on

&&
Ex
pr
es
si
on

Ex
pr
es
si
on

||
Ex
pr
es
si
on

!$
ch
ec
ke
d

$c
he
ck
ed

&&
$v
al
id

$t
oB
e
||

!$
to
Be

R
el
at
io
na
l

Ex
pr
es
si
on

==
Ex
pr
es
si
on

Ex
pr
es
si
on

!=
Ex
pr
es
si
on

Ex
pr
es
si
on

<=
Ex
pr
es
si
on

Ex
pr
es
si
on

>=
Ex
pr
es
si
on

Ex
pr
es
si
on

<
Ex
pr
es
si
on

Ex
pr
es
si
on

>
Ex
pr
es
si
on

$n
am
e
==

"a
dm
in
"

$d
ur
at
io
n
!=

0
$a
ge

<=
12
0

$e
nd

>=
$s
ta
rt

!(
$m
on
ey

<
$c
os
t)

$a
mo
un
t
>
0

Ad
di
tiv
e

Ex
pr
es
si
on

+
Ex
pr
es
si
on

Ex
pr
es
si
on

-
Ex
pr
es
si
on

$p
ri
ce

+
$t
ax

$p
ri
ce

-
$d
is
co
un
t

M
ul
tip
lic
at
iv
e

Ex
pr
es
si
on

*
Ex
pr
es
si
on

Ex
pr
es
si
on

/
Ex
pr
es
si
on

Ex
pr
es
si
on

%
Ex
pr
es
si
on

$q
ua
nt
it
y
*
$p
ri
ce

$s
ea

/
2

$p
eo
pl
e
%
$g
ro
up
Si
ze

D
er
ef
er
en
ce

Ex
pr
es
si
on
(.
Id
)+

Ex
pr
es
si
on
([
Ex
pr
es
si
on
])
+

@p
er
so
n.
na
me

@p
er
so
n[
"n
am
e"
]

Ar
ra
y

[E
xp
re
ss
io
n
(,

Ex
pr
es
si
on
)∗
]

[$
na
me
,
"T
om
",

5]
H
as
h

{(
Id
:E
xp
re
ss
io
n)
?
(,

Id
:E
xp
re
ss
io
n)

∗ }
{n
am
e:

$n
am
e,

ag
e:

25
}

Pa
re
nt
he
si
s

(E
xp
re
ss
io
n)

!(
@f
oo

&&
(@
ba
r
||

@b
az
))

Ta
bl
e
5.
5.
:O
ve
rv
ie
w
of
E
xp
re
ss
io
ns

79

5. View Data Binding Concepts

Since Parsing Expression Grammar does not allow left recursion, we cannot specify
a rule like Expression ← Expression "+" Expression. We, therefore, use a trick of
making a round trip over all available expressions. Finally, grammar 5.15 shows how
the syntax of Expressions is defined and should make the idea of the round trip clearer.

Expr← Conditional
Conditional← Logical "?" Expr ":" Expr |

Logical "?:" Expr |
Logical

Logical← "!" Expr |
Relational (LogicalOp Expr) + |
Relational

LogicalOp← "&&" | "||"
Relational← Additive (RelationalOp Expr) + |

Additive
RelationalOp← "==" | "!=" | "<=" | ">=" | "<" | ">"
Additive← Multiplicative (AdditiveOp Expr) + |

Multiplicative
AdditiveOp← "+" | "-"
Multiplicative← Dereference (MultiplicativeOp Expr) + |

Dereference
MultiplicativeOp← "*" | "|" | "%"
Dereference← Other ("." Id) + |

Other ("[" Expr "]") + |
Other

Other← Literal | Array | Hash | Adapter | Parenthesis
Literal← QuotedString | Regexp | Number | Value
Array← "[" (Expr ("," Expr)∗)? "]"
Hash← "{" (HashKV ("," HashKV)∗)? "}"
HashKV← Id ":" Expr
Parenthesis← "(" Expr ")"

Grammar 5.15: Syntax of Expression

Expression Semantics

To explain the semantics of Expressions we proceed in a bottom-up fashion. We start
with Literals and work our way up to the compound Expressions.

80

5.3. Convenience Binding Concepts

All Literals are interpreted as if they were Adapter that cannot be used as the Data
Sink. To reach this we assume that there is a certain attribute in the Presentation
Model for each Literal used in a Binding. We call the Adapter pointing to this value
$literal. Since this Adapter may never be written both directly or indirectly through
references, we introduce a Connector makeValue which converts the Reference that is
retrieved from the Adapter into a value. It is then possible to replace any Literals with
a Binding Scope Adapter that was assigned with the Literal. Consider the following
example from listing 5.48 that can be easily converted into the two Bindings from
listing 5.49.

1 attr:id <- "id"

Listing 5.48: Before Conversion

1 @temp <- makeValue <- $literal
2 attr:id <- @temp

Listing 5.49: After Conversion

Since Literals are Expressions and Expressions are syntactically only allowed where
Adapter are possible, this conversion always resolves Literals.
Conditional, Logical, Relational, Additive andMultiplicative can all be converted by

first converting their sub Expressions. This means that we recursively convert the
parts that they are made of first and can assume that they consist of only Adapter
now. Each of them can then be realized by a Connector which stores its result in the
Binding Scope. This Binding Scope Adapter then replaces the original expression.
We only show the conversion for a Conditional. All other mentioned types of Expres-

sions should follow naturally. The Connector called ifThenElse expects as its input a
Resource Sequence of length three and operates as we would intuitively expect. List-
ing 5.50 shows a Binding using a Conditional which can be easily transformed into the
two semantically equal Bindings from listing 5.51. It should be noted that it depends
on the implementation of ifThenElse, whether the Conditional is evaluated eagerly or
lazily. The transformation itself does not impose eager evaluation, since the Connector
only receives a list of three References as its input.

1 @foo <- @bar ? @baz : @quux

Listing 5.50: Before Conversion

1 @temp <- ifThenElse <-
2 @bar, @baz, @quux
3 @foo <- @temp

Listing 5.51: After Conversion

The Array andHash Expressions can be expressed by using a Connector that creates
the desired data structure from multiple inputs. Consider the following example from
listing 5.52 which contains both an Array and a Hash. It can be easily transformed
into the set of Bindings from listing 5.53.

1 @foo <- [@bar, {baz: @quux}]

Listing 5.52: Before Conversion

1 @t1 <- genHash("baz") <- @quux
2 @t2 <- genArray <- @bar, @t1
3 @foo <- @t2

Listing 5.53: After Conversion

81

5. View Data Binding Concepts

The Dereference can be interpreted as a Connector addToPath which adds all Ids
to the Path that it reads from the Expression. Consider the example from listing 5.54
which intentionally is a bit more complex to also give another example on how to con-
vert a Conditional and a Relational. The names of the temporary variables from listing
5.55 are only to make it easier to comprehend. An automatic conversion would just
number the variables similar to the algorithm shown in section 5.1.2.3. The exam-
ple also shows how powerful Expressions are and how much code can be saved when
using them.

1 @person <-
2 @people[0].age
3 > @people[1].age ?
4 @people[0] :
5 @people[1]

Listing 5.54: Before Conversion

1 @person0 <- addToPath(0)
2 <- @people
3
4 @person1 <- addToPath(1)
5 <- @people
6
7 @person0Age <- addToPath("age")
8 <- @person0
9
10 @person1Age <- addToPath("age")
11 <- @person1
12
13 @p1OlderP2 <- gt
14 <- @person0Age, @person1Age
15
16 @person <- ifThenElse
17 <- @p1OlderP2, @person0,
18 @person1

Listing 5.55: After Conversion

Parenthesis control the order in which compound Expressions are resolved recur-
sively. Implicitly every Expression is evaluated from left to right.
It is important to note that whether an Expression might occur as the Data Sink

solely depends on how its conversion to Core Concepts is defined. Conditional, Deref-
erence, Array and Hash are transformed in a way that allows the Connector involved
to preserve References. So all Bindings from listing 5.56 are semantically valid and
make sense.

1 value -> @condition ? $target : $alternative
2 $people[0].age <-> @firstPersonAge

Listing 5.56: Before Conversion

All other Expression cannot be used as Data Sink. Obviously, it does not make sense
to write Literals, but also for other Expression in most cases, the original values could
not possibly be recovered. Consider as an example an addition of two numbers to one
number. It is impossible to recover the summands from the sum unequivocally.

82

5.4. Convenience Structure Concepts

5.4. Convenience Structure Concepts
In this section we introduce our only Convenience Structure Concept which allows to
use Templates, a way of structuring components on the level of View Masks.

5.4.1. Template
With Templates it is possible to mark a certain part of a View Mask and its associated
section of a Group as a blueprint for the same or another View Mask. Since the Tem-
plate may then be injected at another place once or multiple times, less code has to
be written and reusing elements becomes possible.

Template Syntax

Both, Template Extraction and Injection are written as an additional information of a
Scope. Therefore, we rework grammar 5.8 for Scopes into a new version 5.16 including
Templates.

Scope← Selectors Iteration? TplExtraction? "{" ScopeBody∗ "}" |
Selectors (Iteration | Label | TplInjection | TplExtraction)

TplInjection← "<<" Id ("." Id)∗ "(" RS? ")"
TplExtraction← ">>" Id "(" (Adapter ("," Adapter)∗)? ")"

Grammar 5.16: Syntax of Scope with Templates

Listing 5.57 shows an example how templates may be used together with the Tem-
plate DOMFragment from listing 5.58. It should be noted that the brackets are manda-
tory even if there are no parameters, so that the Concept can not be confused with a
selector. In addition, defining a Template without parameters can be seen as an edge
case.

1 @binding foo {
2 #markup >> baz(@text) {
3 span { text <- @text }
4 }
5 }
6 @binding bar {
7 #hookOne << foo.baz("Hello!")
8 #hookTwo << foo.baz($name)
9 }

Listing 5.57: Template Example

1 <div id="template">
2 <div id="markup">
3
4 </div>
5 <div id="hookOne" />
6 <div id="hookTwo" />
7 </div>

Listing 5.58: Template DOM Fragment

To make the example easier both Template Extraction and Injection happen within
the same Template DOM Fragment. In a real application this would probably be not
the case.

83

5. View Data Binding Concepts

Template Semantics

The Adapter which are specified like parameters of a Template Extraction can be as-
signed with Expressions when Injection is used. We assume that the amount of param-
eters is in both cases the same. Semantically a new Binding is added for each param-
eter to reflect its assigned value. The children of the extracting Scope are appended
to the injecting Scope. The descendants of the part matched by the Selector of the
injecting Scope are replaced by the descendants of the part matched by the Selector
of the extracting Scope. The extracted parts are removed from the Binding Specifi-
cation and the Template DOM Fragment. We assume that all participating Selectors
always exactly match one element of the Template DOM Fragment. Each Template
has a name and is referenced by including the names of its surrounding Groups in a
dot-notation.
To illustrate this we convert the example from listings 5.57 and 5.58 into listings

5.59 and 5.60 respectively.

1 @binding foo { }
2 @binding bar {
3 #hookOne {
4 @text <- "Hello!"
5 span { text <- @text }
6 }
7 #hookTwo {
8 @text <- $name
9 span { text <- @text }
10 }
11 }

Listing 5.59: Binding Specification

1 <div id="template">
2 <div id="hookOne">
3
4 </div>
5 <div id="hookTwo">
6
7 </div>
8 </div>

Listing 5.60: Template DOM Fragment

While other libraries allow to dynamically decide which Template should be used
we do not allow this. The reason is that then Template is not a Convenience Concept
anymore which easily can be resolved with a simple preparation step. Therefore a
Template is always referenced by an Id, instead of an Expression.
Another restriction – similar to Iteration (see section 5.1.3) – is that the Binding

Scope Adapter used during Extraction may not be used in any ancestor Scope. An
example of this is the Adapter @text in listing 5.57 which must not be used in any of
#markup’s ancestor Scopes.

5.5. Domain Specific Language
After reworking the grammar for a Binding Specification multiple times while gradu-
ally introducing all of our Concepts, we want to conclude this chapter by combining all
revisions into a final grammar 5.17. Figure 5.4 is an annotated example of a Binding
Specification to provide a visual reference for most of the terms from our ontology and
domain specific language.

84

5.5. Domain Specific Language

BindingSpecification← Blocks
Blocks← (Block)∗

Block← Group | Scope
Group← Identification "{" Blocks"}"
Identification← "@binding " GroupIdentifier
GroupIdentifier← [a-zA-Z_]([a-zA-Z0-9_-])∗

Scope← Selectors Iteration? TplExtraction? "{" ScopeBody∗ "}" |
Selectors (Iteration | Label | TplInjection | TplExtraction)

Selectors← Selector ("," Selector)∗

ScopeBody← Block | Binding
Iteration← "(" (Entry ("," Key)? ":")? Collection ")"
Entry← Adapter
Key← Adapter
Collection← Expr
Label← "::" LabelIdentifier
LabelIdentifier← [a-zA-Z_]([a-zA-Z0-9_-])∗

TplInjection← "<<" Id ("." Id)∗ "(" RS? ")"
TplExtraction← ">>" Id "(" (Adapter ("," Adapter)∗)? ")"
Binding← IRSleft Sbo ConnectorChain Sbo IRSright |

IRSleft Sbo IRSright
IRSleft← (RS "+>")? RS
IRSright← RS ("<+" RS)?
RS← Expr ("," Expr)∗

ConnectorChain← Connector (Cbo Connector)∗

Sbo← "<-" | "->" | "<->" | "<∼" | "∼>"
Cbo← "<-" | "->" | "<->" | "<∼" | "∼>"
Adapter← AdapterId Parameters?
Connector← Id Parameters?
Parameters← "(" Parameter ("," Parameter)∗ ")"
Parameter← Expr | Id "=" Expr
AdapterId← [@$#%&] [a-zA-Z_] ([a-zA-Z0-9_-])∗ |

[a-zA-Z_] ([a-zA-Z0-9_])∗

(":" [a-zA-Z_] ([a-zA-Z0-9_-])∗)?
Id← [a-zA-Z_] ([a-zA-Z0-9_])∗

Expr← (see grammar 5.15)

Grammar 5.17: Binding Specification

85

5.
View

D
ata

B
inding

C
oncepts

@binding foo {
 div {
 attr:class <- $divClass
 li (@pers: $persons) {
 text <- @pers.name
 on:click +> true -> @pers.clicked
 }
 }
}
@binding {
 …
}

B
in

d
in

g Sp
e

cificatio
n

G
ro

u
p

Sco
p

e Sco
p

e

G
ro

u
p

Group Identifier

Selecto
r

Iteration

B
in

d
in

g R
u

le

on:click +> true -> @pers.clicked

Adapter
Pure Adapter Exp.
Resource

Adapter

Resource

Expression Expression Expression

Initiated Resource Sequence

Initiator

(Initiator) R. Seq. (Initiated) R. Seq. Resource Sequence

Segment Segment

(Initiator) Binding Operator

(Segment) Binding Operator

Figure 5.4.: Annotated Binding Specification

86

6. Implementation, BindingJS

This chapter is all about demonstrating how the previously defined Concepts can be
put into action. We do so with a JavaScript library called BindingJS, which is publicly
accessible at bindingjs.org. It is executed by a web browser on the client. In this
chapter we first describe the architecture of BindingJS and show how its various com-
ponents interact. After that, we explain its API and how it can be operated by a user.
Finally, the algorithms that operate behind the scenes of BindingJS are shown and clar-
ified. While we plan on implementing all Concepts with BindingJS in the future, only
the implementation of Core Concepts is considered in this chapter. All Convenience
Concepts may be implemented by performing their transformation to Core Concepts
(see chapter 5) in a preparation step. This, however, might not always be the most
efficient way to realize them.

6.1. Architecture

In this section we outline and name the components that make up BindingJS with
the help of context diagrams, showing how it interacts with peripherals and with the
help of component diagrams, illustrating its internal structure. We also give a short
introduction about the technologies that are used, how BindingJS is tested and how it
can be debugged.

Context

The goal of BindingJS is to bind a Presentation Model to a DOM Fragment. The Bind-
ing Specification and Template DOM Fragment are inputs to the library and can be
seen as static instructions on how to perform this binding or synchronization. These
relationships are visualized in figure 6.1. It also shows the flow of data. Since these
elements are inputs, information is never written to the Template DOM Fragment or
Binding Specification. The DOM Fragment and Presentation Model on the other hand
are both read and written.
To give a more intuitive understanding of the components which are utilized by Bind-

ingJS the figure also shows examples of how to represent each of them. We assume that
both DOM Fragment and Template DOM Fragment always comprise HTML, while the
Binding Specification can be recognized by our domain specific language from chapter
5. Since BindingJS is model-agnostic, the Presentation Model might be a Componen-
tJS (see section 2.1.3) or Backbone (see section 2.1.1) model, too, but for simplicity
we usually show examples having a plain JSON object as their Presentation Model.

87

http://www.bindingjs.org/

6. Implementation, BindingJS

Figure 6.1.: BindingJS, Context Diagram

Components
Figure 6.2 shows how BindingJS is structured internally. The Binding Specification is
first processed by a Parser (see section 6.3.3) that produces an abstract syntax tree
(AST). This tree, together with the Template DOM Fragment, is converted into an It-
eration Tree by the Preprocessor (see section 6.3.4). Last a component called Engine
uses and manipulates the Iteration Tree to perform the actual View Data Binding with
the information provided by two repositories, one for Adapter and another for Con-
nectors (see section 6.3.1).
As we zoom deeper into the Engine in figure 6.3, more components are revealed.

The task of the Iterator (see section 6.3.5) is to manipulate the DOM Fragment and to
produce or delete Iteration Instances with the help of the Binding Scope (see section
6.3.2). The Propagator (see section 6.3.6) takes care about Bindings and their Propa-
gation (see section 5.1.2). They are a part of Iteration Instances and their comprised
Adapter and Connectors are resolved by looking them up in the appropriate reposi-
tory. These Adapter may then read from any of the three depicted data sources DOM
Fragment, Binding Scope or the Presentation Model.

Technologies and Dependencies
BindingJS is programmed in JavaScript, since it is the standard web programming lan-
guage and supported by all web browsers, thus, making it ideal for our intended use in
web applications. Since the behavior of JavaScript DOM manipulation is inconsistent
across different web browsers, BindingJS depends on jQuery. This allows for portabil-
ity, while keeping the implementation compact by avoiding browser specific code and
instead using a high level API. jQuery is the only dependency and is present in most
of todays web applications already. The share of web pages using jQuery was around
60 percent as of 1st of September 2014 [Webac].

88

6.1. Architecture

BindingJS

P
re

se
n

ta
ti

o
n

 M
o

d
e

l D
O

M
 Fra

g
m

e
n

t

Binding Specification Template DOM Fragment

Parser Preprocessor

Engine

Adapter
Repository

Connector
Repository

Iteration
Tree

AST

Figure 6.2.: BindingJS, Component Diagram

P
re

se
n

ta
ti

o
n

 M
o

d
e

l

BindingJS

D
O

M
 Fra

g
m

e
n

t

Binding Specification Template DOM Fragment

Parser
Preprocessor

Engine

Adapter
Repository

Connector
Repository

Iteration
Tree

Propagator

Iterator

Iteration
Instances

Binding
Scope

Figure 6.3.: BindingJS Engine, Component Diagram

89

6. Implementation, BindingJS

In addition, we took care that our solution is still usable even when jQuery would
otherwise cause trouble by supporting its no conflict strategy1 (see section 6.2).
Development dependencies are managed with node.js and the project is built with

Grunt. The build process is configured so that it comprises lint and minification done
byUglifyJS. The result of the build process is a set of minified JavaScript files including
the library itself and a selection of Adapter andConnector implementations. These can
all be included in any web page. BindingJS is open source and uses Git for revision
control. More information about the technologies can be found on the web pages given
in table 6.1.

Name Official Page
node.js http://nodejs.org/
Grunt http://gruntjs.com/
UglifyJS https://github.com/mishoo/UglifyJS
Git http://git-scm.com/

mocha http://visionmedia.github.io/mocha/
Selenium IDE http://docs.seleniumhq.org/projects/ide/

Table 6.1.: BindingJS Technology Overview

Testing
BindingJS uses mocha for unit and Selenium IDE for integration tests. The latter has
the advantage over using DOM virtualization like jsdom2 that it operates on a real
browser in an almost identical fashion to an actual user and is much easier to setup
and use. Listing 6.1 shows a very simple example of a test case written with the
JavaScript framework mocha. Figure A.2 in the appendix demonstrates the Selenium
IDE which is used for both defining and executing test cases.

Debugging
Input components, such as the Binding Specification and the Template DOM Frag-
ment, are modified inside the library before being put into action. Therefore it could
be difficult for a user to retrace the cause of problems. We provide mechanisms to aid
finding problems which are either caused by erroneous input or internal processing
errors.

• Whenever possible, we validate assumptions made in the implementation and
replace meaningless with explanatory error messages.

• Users of the library may set an individual log level (see 6.2) to get more informa-
tion about internal processing.

1http://api.jquery.com/jquery.noconflict/
2https://github.com/tmpvar/jsdom

90

http://nodejs.org/
http://gruntjs.com/
https://github.com/mishoo/UglifyJS
http://git-scm.com/
http://visionmedia.github.io/mocha/
http://docs.seleniumhq.org/projects/ide/
http://api.jquery.com/jquery.noconflict/
https://github.com/tmpvar/jsdom

6.1. Architecture

• Once the Binding Specification is parsed into an abstract syntax tree, this tree
is modified by both the Preprocessor and the Engine. To visualize these changes
our implementation of the abstract syntax tree is able to render itself as a legible
Binding Specification3.

• During preprocessing several validation steps are performed (see section 6.3.4).
These algorithms recognize restrictions and erroneous Bindings which have not
already been prevented by the domain specific languages, such as those con-
tained in listing 5.9.

Further, it should be noted that, since the code of BindingJS is open source, every
user has the possibility to retrace problems by stepping through its execution. Also,
with the project being hosted on GitHub support from the developers or other users
is available through the social features of the platform.

1 describe("BindingJS DSL Parser", function () {
2 describe("parse()", function () {
3 it("allows the binding DSL to be parsed", function () {
4 // Setup
5 let dsl = fs.readFileSync(
6 path.join(__dirname, "parsertest.bind"),
7 { encoding: "utf8" }
8)
9
10 // Perform
11 let ast = BindingJS.parse(dsl)
12
13 // Assert
14 expect(ast).to.be.a("object")
15 })
16 })
17 })

Listing 6.1: Example of a Mocha Testcase

3https://github.com/rummelj/bindingjs/blob/023b220246d797f24d0418d57a3c0c0c227a4fe1/src/
core/util/tree.js#L266

91

https://github.com/rummelj/bindingjs/blob/023b220246d797f24d0418d57a3c0c0c227a4fe1/src/core/util/tree.js#L266
https://github.com/rummelj/bindingjs/blob/023b220246d797f24d0418d57a3c0c0c227a4fe1/src/core/util/tree.js#L266

6. Implementation, BindingJS

6.2. Application User Interface
Before presenting the algorithms behind the components shown in the previous sec-
tion, we want to point out how one can interact with BindingJS through its API. Figure
6.4 shows all relevant interfaces in a class diagram of the Unified Modeling Language.

6.2.1. Public API
By default, upon including the library the symbol BindingJS becomes globally avail-
able within the context of the web page. It provides the methods shown in the upper
left box.

$ If no parameter is provided, a reference to the jQuery instance that BindingJS is
currently working with is returned. This method is used for all internal accesses
to jQuery and by default provides access to the globally available jQuery element
of the web page. If, however, this is not available, it is possible to manually set
jQuery by providing it as a parameter so that only the given reference is used.
This is necessary if jQuery is registered under a different symbol or is not globally
available at all.

symbol Similar to jQuery’s no conflict strategy. This method allows to change the
name of the global variable that BindingJS uses. By default this is BindingJS
which can be changed to an arbitrary identifier. If no parameter is provided,
BindingJS removes itself from the pool of global variables. By storing a reference
beforehand conflicts and the pollution of the global JavaScript name space are
prevented

version Provides a JSON object comprising information about the version of BindingJS
including major, minor, micro version numbers and its build time.

debug This method is available in three different flavors. If no parameter is provided,
the current log level is returned. With only the first parameter a new log level can
be set and by adding a message it is logged on the given log level. This way it is
possible to specify how much information is required and a consistent interface
for providing log messages is defined. Typically, the log level will be set to a high
value in a development and to a low value in a production environment.

plugin Through this methodModel View Adapter and Connectors can be registered at
the library. By defining the name of these components at the stage of registration,
instead of specifying it as part of their implementations, we avoid that they have
conflicting names and allow the greatest flexibility. All plug-ins have to implement
one of the interfaces shown in the upper right of figure 6.4.

create This Factory Method4 creates an instance of View Data Binding, whose inter-
face is shown in the lower left of figure 6.4.

Whenever possible, we provide a fluent API so that consecutive calls can be chained
into one statement. Therefore, if there would otherwise be no return value, the API
returns a reference to itself allowing expressions, such as the one shown in listing 6.2.
4http://www.oodesign.com/factory-pattern.html

92

http://www.oodesign.com/factory-pattern.html

6.2. Application User Interface

Fi
gu
re
6.
4.
:B
in
di
ng
JS
AP
I

93

6. Implementation, BindingJS

1 var vdb = BindingJS
2 .$(myJQuery) // Setting jQuery Reference
3 .debug(1) // Setting Debug Level
4 .plugin("$", myModelAdapter)
5 // Plugging In Presentation Model Adapter
6 .create() // Creating Instance of View Data Binding

Listing 6.2: BindingJS API Example

6.2.2. Binding API
Once an instance of View Data Binding is created through create() it can be config-
ured by the methods shown in the lower right box of figure 6.4.

bindingScopePrefix Every instance of ViewData Binding provides a built-in instance of
the Binding Scope Adapter that does not have to be plugged in explicitly. Through
this method it is either possible to retrieve the current Prefix of that Adapter by
providing no parameter, or to set it to a new value by passing a string. We decided
that it is better to define this value locally to View Data Binding instead of globally
in BindingJS, since it relates to the Binding Specification, which is also local to
View Data Binding. It could be that not all Binding Specifications employed by a
single web application use the same Binding Scope Adapter Prefix. All internal
processing of theBinding Specification never assumes that a certain Prefix is used
and always uses this method without a parameter to decide whether an Adapter
refers to the Binding Scope. The default value returned by this method is @.

1 // With Group String
2 BindingJS.create()
3 .binding("@binding foo { " +
4 "@binding bar { " +
5 "input { " +
6 " value -> $value" +
7 "}}}", "foo.bar")
8
9 // Without Group String
10 BindingJS.create()
11 .binding("input { value -> $value }")

Listing 6.3: Setting the Binding Specification of View Data Binding

binding This polymorphic method allows to set the Binding Specification and may be
only called once, since the Binding Specification is a static input and can not be
changed after preprocessing. First, it is possible to pass the Binding Specification
as a string which might be defined in-place, wrapped in a variable or pulled from
an external file. An optional group string may be specified to realize Identification
(see section 5.2.1). If no group is specified, the whole Binding Specification is
used and otherwise only the given group is used for further processing while
ignoring all other parts of the Binding Specification. The group string is expected

94

6.2. Application User Interface

to identify a Group with a dot-notation. Listing 6.3 shows an example of two
statements, which both set the same Binding Specification. Another possibility
lies in passing an HTMLElement into the method which realizes declarative View
Data Binding. Since this feature is not part of our Core Concepts, we only give
an idea about how to implement it in chapter 8 and do not consider it any further
within this chapter.

1 // 1. Selector
2 BindingJS.create().template("#template")
3
4 // 2. HTML
5 BindingJS.create().template("<div id=’template’>...</div>")
6
7 // 3. HTML Element
8 var template = jQuery("#template").get()
9 BindingJS.create().template(template)
10
11 // 4. Document Fragment
12 var $dF = jQuery(document.createDocumentFragment())
13 $dF.append("<div id=’template’>...</div>")
14 var dF = $dF.get()
15 BindingJS.create().template(dF)

Listing 6.4: Setting the Template of View Data Binding

template In the same way as with binding we want to provide the most flexibility in
specifying the source of the Template DOMFragment. It can be passed as a string
representing a piece of HTML or a jQuery selector which is applied to the body of
the current page. The selector must exactly match one element. Another option
lies in providing a reference to an HTMLElement or a Document Fragment. The
difference between the two is that they inherit from different interfaces and that
HTMLElements are usually attached to the document whileDocument Fragments
are detached and only exist virtually. Listing 6.4 shows all options that are there
to set the Template DOM Fragment. This method may be called only once for the
same reason as binding.

model With this method the View Data Binding instance is informed how to get a
reference to the Presentation Model. It may be of any type and is never accessed
by View Data Binding itself, but only through the registered Presentation Model
Adapter. This method may be called only once because only the values inside the
Presentation Model are dynamic.

mount After the three input parameters are given through binding, template and
model, the DOM Fragment produced by BindingJS may be attached to the docu-
ment with this method. Again, a jQuery selector, which must match exactly one
element, can be used to reference an HTMLElement, or it may be passed directly
into the method. In both cases, mount has a replace semantic. That means that
the HTMLElement is replaced by the DOM Fragment, instead of the DOM Frag-
ment replacing its children.

95

6. Implementation, BindingJS

1 // 1. Selector
2 BindingJS.create()
3 .binding(...).template(...).model(...)
4 .mount("#template")
5
6 // 2. HTML Element
7 var template = jQuery("#template").get()
8 BindingJS.create()
9 .binding(...).template(...).model(...)
10 .mount(template)

Listing 6.5: Mounting the DOM Fragment

Listing 6.5 shows all possibilities which are there to mount the DOM Fragment.
A typical use case, which is shown in line 2, is to mount the DOM Fragment at
the same position where the Template DOM Fragment resides. This way the lat-
ter does not need to be removed manually and it seems as if the Template DOM
Fragment was processed in-place. Mount may be called more than once, but the
DOM Fragment never exists multiple times. That means that if mount is called
twice, the content at the firstMount Point disappears and is moved to the second.

unmount Opposite of mount. Removes the DOM Fragment entirely.

activate This method puts the View Data Binding into action. It may called before
or after mount. The Bindings from the Binding Specification are initialized and
made active so that they start to synchronize the Presentation Model and the
DOM Fragment (see section 6.3). A View Data Binding may only be activated if
it was not previously activated.

deactivate Opposite of activate that puts the View Data Binding in a state as if it
was never activated. It is possible to reactivate a View Data Binding which was
deactivated.

pause A View Data Binding which is active may also be paused. The effect of it is that
the Bindings of the Binding Specification no longer propagate if their Source
Adapter change. These changes, however, are stored so that upon resuming the
state of the View Data Binding is consistent again. Similar to activate a View
Data Binding may only be paused if it was not previously paused.

Figure 6.5.: State Diagram, View Data Binding

96

6.2. Application User Interface

resume Opposite of pause that puts the View Data Binding in a state as if it was never
paused. It is possible to pause a ViewData Binding again after resuming it. Figure
6.5 shows a state diagram summarizing how a View Data Bindingmay change its
state. The transitions of the diagram represent the methods which are allowed
in each state and what their effect is.

1 var binding =
2 "@binding foo {" +
3 "@binding bar {" +
4 "#socket::socket" +
5 "}" +
6 "@binding baz {" +
7 "// ..." +
8 "}}" +
9
10 // Whole Binding
11 BindingJS.create()
12 .binding(binding).template(...).model(...)
13 .socket("foo.bar.socket")
14
15 // Part of Binding
16 BindingJS.create()
17 .binding(binding, "foo.bar").template(...).model(...)
18 .socket("bar.socket")

Listing 6.6: Accessing Socket API

socket This method provides access to the Socket API of a certain Socket referenced
by its Label together with its surrounding Group Identifiers. It should be noted
that the correct label depends on the part of the Binding Specification which was
selected when calling binding. Listing 6.6 shows two examples how the Socket
API may be retrieved.

destroy When the View Data Binding is no longer needed it should be destroyed to
avoid unnecessary memory consumption. This method can be seen as the oppo-
site of BindingJS’ create. Destroy performs unmounting if it has not been done
already.

Like BindingJS, View Data Binding provides a fluent interface so that method calls
can be chained. We conclude this section with the example from listing 6.7. It shows
how many of the methods can be used to configure and set up View Data Binding for
a web page.

97

6. Implementation, BindingJS

1 <html>
2 <head>
3 <script src="jquery.js"></script>
4 <script src="binding.js"></script>
5 <script type="text/binding">
6 // Binding Specification
7 @binding view {
8 input {
9 value <-> $name
10 }
11 }
12 </script>
13 <script type="text/javascript">
14 // Model
15 var model = {
16 name: "Enter your name!",
17 }
18
19 // On Page Ready
20 $(function () {
21 BindingJS
22 .plugin("$", jsonModelAdapter)
23 .plugin("value", valueViewAdapter)
24 .create()
25 .template("#template")
26 .binding($("script[type=’text/binding’]"))
27 .model(model)
28 .mount("#template")
29 .activate()
30 })
31 </script>
32 </head>
33 <body>
34 <!- Template DOM Fragment ->
35 <div id="template">
36 <input type="text" />
37 </div>
38 </body>
39 </html>

Listing 6.7: Typical Use of the View Data Binding API

98

6.2. Application User Interface

6.2.3. Socket API
All methods of the Socket API refer to exactly one Socket of the initial Binding Specifi-
cation. Their purpose is to get the correct HTMLElements inside the DOM Fragment
that are produced from the Template DOM Fragment by the View Data Binding.

instances Counts the current number of instances of a Socket. The result may be
greater or equal to zero. Sockets cannot be present at all when they are hidden
or exist multiple times when repeated by Iteration.

instance This method can be used to iterate over all instances of a Socket by pass-
ing all numbers in the interval [0;instances()). The order in which the HTM-
LElements are returned remains unspecified. In particular, the order could be
different from the order of appearances within the DOM Fragment. However,
it is guaranteed that if the number of instances does not change while they are
retrieved, each of them will appear exactly once.

onInsert Allows to register a callback that is notified after a Socket is inserted by an
Iteration. Callbacks of Sockets which are in a Scope that has no iterated ancestor
Scope are called on activating the View Data Binding. The callback receives the
newly inserted HTMLElement and an array of keys. This key array represents
the keys of the Iterations that lead to the creation of this Socket instance in top-
down order. To better explain this listing 6.8 shows which arrays the callback
receives. The array is required if the content that should be inserted into the
Socket depends on the current Entry or Key of the Iteration. It is not necessary
to give an array of Entries, since they can be retrieved from the Presentation
Model by using the provided keys.

onRemove While onInsert’s callback is notified after the HTMLElement of a Socket
was inserted into the DOM Fragment, with onRemove it is possible to be notified
just before this HTMLElement is removed again. This can happen because of
Iteration or when the View Data Binding is destroyed or unmounted. The callback
receives an array of keys which contains the same information as the keys array
of onInsert.

99

6. Implementation, BindingJS

1 ...
2 <script type="text/binding">
3 // Binding Specification
4 @binding view {
5 .plainSocket::plainSocket
6 .iterationOuter (@list: $data) {
7 .iterationInner (@elem : @list) {
8 .iteratedSocket::iteratedSocket
9 }}}
10 </script>
11 <script type="text/javascript">
12 // Model
13 var model = { data: { foo: ["a", "b"], bar: ["c", "d"] } }
14
15 $(function() {
16 var binding = BindingJS.create()
17 .template("#template")
18 .binding($("script[type=’text/binding’]"))
19 .model(model)
20
21 binding.socket("view.plainSocket").onInsert(
22 function (keys, element) {
23 console.log("PlainSocket: " + JSON.stringify(keys))
24 })
25 binding.socket("view.iteratedSocket").onInsert(
26 function (keys, element) {
27 console.log("IteratedSocket: " + JSON.stringify(keys))
28 })
29
30 binding.mount("#template")
31 .activate()
32
33 // Prints on console
34 // PlainSocket: []
35 // IteratedSocket: ["foo", 0]
36 // IteratedSocket: ["foo", 1]
37 // IteratedSocket: ["bar", 0]
38 // IteratedSocket: ["bar", 1]
39 })
40 </script>
41 ...
42 <!- Template DOM Fragment ->
43 <div id="template">
44 <div class="plainSocket"></div>
45 <div class="iterationOuter">
46 <div class="iterationInner">
47 <div class="iteratedSocket"></div>
48 </div></div></div>
49 ...

Listing 6.8: Registering Callbacks for Socket Insertions

100

6.2. Application User Interface

6.2.4. Plugin API
In section 6.2.1 we have shown how Adapter and Connectors can be plugged into
BindingJS so that they are ready to be used in a Binding Specification. We now want
to explain what their interfaces must be and provide example implementations. Both
Adapter and Connectors are defined as a set of the methods shown on the top right of
figure 6.4. Optional methods are indicated by a question mark.

Adapter

There are Adapter that cannot be observed, unobserved or set. For example, it usually
does not make sense to observe the View Adapter text, since the text of an HTML
element cannot be changed by the user.
The difference betweenModel and View Adapter is that they expect different associ-

ated elements for the methods observe, getValue, getPaths and set. The associated
element of a Model Adapter always is the Presentation Model while it is an element
from the DOM Fragments for View Adapter. Since the interfaces of the two are equal
except for these parameter types, there is a method type that is used by BindingJS to
determine which kind of Adapter is at hand.

observe Observes the associated element at the given Path and executes the callback
whenever the value of the element identified by the Path changes. We expect that
the implementation of an Adapter handles multiple observation of the same Path
efficiently. This means that an Adapter should take care that the same associ-
ated element is not observed multiple times. The return value of the method is a
number that can later be used to call unobserve.

unobserve Removes the observer previously registered which leads to the callback not
being notified anymore. We decided that the Adapter interface is easier to use if
observers are identified by numbers instead of the parameters which created the
observer.

getValue Returns the value of the element referenced by the given Path. The return
type will usually be primitive, but could be of any type.

getPaths Generates a list of Paths that are reachable from the given Path including the
initial Path. The return type is an array of Paths where each Path is represented
by an array of strings.

set Sets the value of the element at the given Path to a new value.

type Must either return the string model or view indicating the type of the Adapter.

To better understand how an Adapter can be implemented we want to demonstrate
two examples. First, a Model Adapter for a JSON Presentation Model in listing A.3.
Second, a View Adapter that reads and writes the value of HTML elements in listing
A.5. These listings can be found in the appendix.
Both Adapter do not directly observe the Presentation Model or the element of the

DOM Fragment when observe is called, but add a new observer to an internal list.
The callback notify then calls all observers from that list so that the same Path is
never observed more than once. To observe a JSON object, the Presentation Model

101

6. Implementation, BindingJS

Adapter in this case usesWatchJS5. Observing DOM Fragment elements can be easily
done with the help of jQuery.
Listing A.3 also shows how the method getValue can be implemented. It recursively

navigates through the model and adds all values to an accumulator which builds the
overall result. The vaue Adapter from listing A.5, on the other hand, has not to deal
with Paths, since it is notmeant to be usedwith aQualifier or as part of aDereferencing
Expression. Hence, the methods getValue and set are easier to implement because
in this simplified example they can just ignore the path parameter. Since there are no
Paths to return except the input path required by the specification of the Adapter API,
getPaths exactly returns a list comprising that single input path.
By considering the examples it should be clear that there is a great flexibility in

implementing both various Presentation Model and View Adapter. For the latter, apart
from the value Adapter, we consider the following set of View Adapter as essential.

text Manipulates the content of HTML tags, such as span, div or p tags.

attr Modifies attributes of HTML tags, such as the id, enabled or checked attributes.

css Changes the appearance of an HTML element by setting the value of a CSS prop-
erty defined by its Qualifier.

class Adds and removes class identifiers inside the string of the class attribute of
an HTML tag. Typically, this attribute represents a whitespace separated set of
classes. Therefore, this Adapter uses its Qualifier as the information, which class
to add or remove. If the Adapter is then written with true, the class is added; if
it is written with false, the class is removed.

on Reads the event whose type is defined by its Qualifier and that is fired by an HTML
tag. It is mainly used as an Initiator, but also allows to retrieve the event instance
when denoted as the Source Adapter of a Binding.

There are two special ways of implementing an Adapter so that it can either be used
as a function or as a callback. If the Presentation Model Adapter is extended so that it
recognizes if the element that is written by set is a function or not, an Adapter can be
used to call a function inside the Presentation Model with the values that were passed
to set. An example of this is shown in listing 6.9.
Similarly by modifying the implementation of getValue an Adapter can behave like

a function. Instead of returning the value from a Data Target it could execute a func-
tion in the Presentation Model and return the result of that function as its value. An
example of this is shown in listing 6.10.

5https://github.com/melanke/Watch.JS/

102

https://github.com/melanke/Watch.JS/

6.2. Application User Interface

1 // Binding Specification
2 button {
3 on:click -> $performClickLogic
4 }
5
6 // Adapter Implementation
7 function set(model, path, value) {
8 var element = resolvePath(model, path)
9 if (isFunction(element)) {
10 element(value) // call function
11 } else {
12 element = value // set new value
13 }
14 }
15
16 // Presentation Model
17 var model = {
18 performClickLogic: function (event) {
19 // Perform Click Logic
20 }
21 }

Listing 6.9: Using Adapter to Execute Callbacks

1 // Binding Specification
2 li (@number: $genArray) { ... }
3
4 // Adapter Implementation
5 function getValue(model, path) {
6 var element = resolvePath(model, path)
7 if (isFunction(element)) {
8 return element() // result of function
9 } else {
10 return element // value of element
11 }
12 }
13
14 // Presentation Model
15 var model = {
16 genArray: function () {
17 var result = []
18 for (i in 1..100) {
19 result.add(i)
20 }
21 }
22 }

Listing 6.10: Using Adapter as a Function

103

6. Implementation, BindingJS

Connector

The interface for a Connector is quickly explained, since it only contains one method
whose input may be a primitive value, a Reference or any structured JSON that con-
tains primitive values and References. A Reference is a wrapper for an Adapter and
is provided and generated by BindingJS when reading from Adapter (see section 5.1.2
and 6.3.6).

Figure 6.6.: Reference, Class Diagram

1 BindingJS.plugin("revert", {
2 process: function (input) {
3 if (isReference(input))
4 input = input.getValue()
5 return (input + "")
6 .split("")
7 .reverse()
8 .join("")
9 }})

Listing 6.11: Connector revert

The interface of a Reference is shown in figure 6.6. Since it is a wrapper for an
Adapter together with a Path, its methods are very similar to those of an Adapter.
Connectors may either keep References or replace them by their underlying or ar-
bitrary values. However, they are not allowed to create new References. This way
all types of Connectors that were described in section 5.1.2.2 can be implemented.
We want to demonstrate this with two examples, a Connector that reverts a string in
listing 6.11, and one that sorts a list of strings in listing 6.12.

1 BindingJS.plugin("sort", {
2 process: function (input) {
3 var values = []
4 foreach (item in input)
5 values.add(item)
6 values.sort(function /* compare */ (a, b) {
7 var aValue = isReference(a) ? a.getValue() : a
8 var bValue = isReference(b) ? b.getValue() : b
9 return aValue < bValue
10 })
11 return values
12 }})

Listing 6.12: Connector Sorting a List of Strings

revert expects a primitive value or a Reference. If it receives a Reference, it first
converts it to its underlying value and thereby destroys it. It always returns a primitive
value. sort, on the other hand, expects a list on which some items may be primitive
values and some References. It uses the underlying values of the References only to
compare them, but does not destroy them. This means that they still exist in the result
values.

104

6.3. Algorithms

6.3. Algorithms
Now that we defined how it is possible to interact with BindingJS through its API, we
turn back to figure 6.3 from section 6.1 and explain what happens inside the compo-
nents when the API is called. We will explain each algorithm by providing examples
and showing what its challenges are. For reference, their actual implementations are
shown in pseudo JavaScript code in the appendix.

6.3.1. Repositories
Both Adapter and Connector Repository are simple key value stores. The key is the
name of the component that was defined when it was plugged in through the BindingJS
API and the value is the component itself. Figure 6.7 shows their interfaces.

Figure 6.7.: Repositories, Class Diagram

The implementation of plugin which registers an Adapter or Connector at Bind-
ingJS is trivial. It does nothing but passing its parameter to the register method
of the appropriate Repository. When the Bindings inside a Binding Specification are
initialized by the Propagator (see section 6.3.6), get is used to resolve the names of
Adapter or Connectors to their actual implementations.

6.3.2. Binding Scope
Not only the Repositories, but also the Binding Scope is a simple map data structure
with the interface shown in figure 6.8. It is used to store all values and References
that are written into the Binding Scope Adapter and represents the third Data Target
alongside the DOM Fragment and Presentation Model.

get Returns the value that was previously stored through set at the given identifier.

set Sets the value of an identifier to a given value. All References that are in to are
observed and all observers of the identifier will be notified when one of their
underlying values changes. If the previous value at the given identifier contains
References they are unobserved before being overwritten. When setting a new
value to an id that was previously set, all observers of that id are notified if the
new value is different from the old one.

observe Allows to be notified about any changes to the data referenced with id. The
method returns a unique number which can be used to call unobserve.

unobserve Stops executing the callback of an observer that was previously registered
through observe.

105

6. Implementation, BindingJS

destroy Removes the value and an id from the Binding Scope as if it were never there,
and also stopping the observation of probable References.

Figure 6.8.: Binding Scope, Class Diagram

It is necessary to observe References
that are written into the Binding Scope
because it stores objects that are or con-
tainReferences. SinceReferences return
their new underlying value as soon as it is
changed, using these objects for compar-
ison is impossible. The correct execution
of Propagation, however, depends on be-
ing able to compare old and new values to
decide if a Binding must be propagated.
A solution would be to store the underly-
ing values of References and use them for comparison. This, however, would make the
implementation unnecessarily complex.

6.3.3. Parser
When the Binding Specification is set for an instance of View Data Binding through
binding it is first handed to the Parser which converts the input string into an abstract
syntax tree (AST). The Parser is implemented with the help of PEG.js6, a parser gener-
ator for JavaScript. With this tool we can use the Parsing Expression Grammars from
chapter 5 as the input for the generator that is created by PEG.js when transforming
this grammar (See Appendix A.6) into JavaScript code. It is able to process any string
starting from any given symbol. In addition, the library offers helpful error messages
so that in case of syntax errors, BindingJS can clearly state where an error occurred
and which characters it expected instead of the ones found.
In listing 6.13 a Binding Specification is shown which produces the AST from listing

6.14. The latter visualizes the tree by first showing the type of each node, followed by
its attributes. The last information in each line is the position where the element was
parsed and should be read as [line/index].
Once parsing the string received through the method binding was successful, it

is discarded and only the AST is saved for further processing. In the case that the
optional group string was used with the method the correct group is searched in the
AST and only that part of it is stored.
The circumstance thatmanyBinding Specifications can bemerged into one file forms

our primary use case for Identification. This, however, would mean that the same
potentially big Binding Specification would have to be parsed over and over again just
to extract parts of it while discarding all other Groups. To solve this problem we plan
on adding a separate parser that only parses Groups before fully parsing the relevant
Group in the future.

6http://pegjs.majda.cz/

106

http://pegjs.majda.cz/

6.3. Algorithms

1 @binding foo {
2 bar (@entry, @key: $collection) {
3 baz <- @entry
4 }}

Listing 6.13: Example Binding Specification as Input for the Parser

1 Blocks [1/1]
2 Group (id: "foo") [1/1]
3 Blocks [1/15]
4 Scope [2/3]
5 SelectorList [2/3]
6 SelectorCombination [2/3]
7 Selector [2/3]
8 Element (name: "bar") [2/3]
9 Iterator [2/7]
10 Variables [2/7]
11 Variable (ns: "@", id: "entry") [2/8]
12 Variable (ns: "@", id: "key") [2/16]
13 Expr [2/7]
14 Variable (ns: "$", id: "collection") [2/22]
15 Binding [3/5]
16 Adapter [3/5]
17 ExprSeq [3/5]
18 Variable (ns: "", id: "baz") [3/5]
19 Connector [3/9]
20 BindingOperator (value: "<-") [3/9]
21 Adapter [3/12]
22 ExprSeq [3/12]
23 Variable (ns: "@", id: "entry") [3/12]

Listing 6.14: Example Abstract Syntax Tree as Output of the Parser

107

6. Implementation, BindingJS

6.3.4. Preprocessor
As soon as all three input components, Template DOM Fragment, Binding Specifica-
tion and Presentation Model, are present, BindingJS initiates the preprocessing. The
Presentation Model is stored as a reference inside the View Data Binding instance,
since it is a component that is both read and written. The Template DOM Fragment,
on the other hand, is cloned when set through template so that preprocessing and
all further algorithms do not operate on the Template DOM Fragment that is attached
but on an internal copy of it. The preprocessing performs a mix of transformation and
validation operations and is divided into eleven steps. Its purpose is to recognize and
eliminate erroneous Binding Specifications upfront and to convert all static input so
that it can be easier processed by the Engine. This mainly includes flattening the hier-
archy of Scopes so that it is only reflected in the resulting Iteration Trees, but neither
in the Binding Scope nor the Selectors of Scopes. Figure 6.9 shows an overview of all
preprocessing operations which we explain in detail in this section.

Figure 6.9.: Preprocessor, Overview

1. Checking Adapter of Iterations

The first preprocessing step checks if every Iteration uses only the Binding Scope
Adapter as their Entry and Key Adapter (See Appendix A.7). In addition, it tests
whether their Qualifiers where used earlier. Both of this is disallowed according to
section 5.1.3. The recursive algorithm works top-down on the abstract syntax tree
collecting all Qualifiers of Binding Scope Adapter. For every occuring Iterator its En-
try and Key Adapter are checked against the aforementioned conditions.
Listing 6.15 shows a Binding Specification (See Appendix A.9 for the corresponding

AST) that fails step 1. When the algorithm is executed the first Scope that occurs is
the one with Selector div. Since @temp is the only Binding Scope Adapter that occurs
directly within this Scope, it is remembered. When the recursion reaches the Scope
from line 8 with Selector li, an exception is thrown because @temp is used as the Key
Adapter of an Iteration. Although @entry is used in both, the span and li Scope, it

108

6.3. Algorithms

1 @binding counter {
2 div {
3 @temp <- $temp
4 span {
5 @entry <- $spanText
6 text <- @entry
7 }
8 li (@entry, @temp: $collection) {
9 text <- @entry + " - " + @temp
10 }}}

Listing 6.15: Step 1: Counter Example

is not the reason why the algorithm fails. According to section 5.1.2.3, in this case
@entry refers to different items of the Binding Scope.

2. Renaming Socket Labels

Sockets are identified by their enclosing Group Identifiers and their Label combined
in a dot-notation. To make access to certain Sockets more efficient their Labels are
renamed in step 2 so that they already include their enclosing Group Identifiers. This
is done by recursively prepending Group Identifiers to Labels in a bottom-up fashion.
An example of a successful transformation is provided by listings 6.16 and 6.17.

1 @binding foo {
2 @binding bar {
3 #socketA::sA
4 }
5 @binding baz {
6 #socketB::sB
7 }
8 }

Listing 6.16: Before Step 2

1 @binding foo {
2 @binding bar {
3 #socketA::foo.bar.sA
4 }
5 @binding baz {
6 #socketB::foo.baz.sB
7 }
8 }

Listing 6.17: After Step 2

3. Expanding Selectors

In step 3 the Selectors of Scopes are evaluated against the Template DOM Fragment
(See Appendix A.8). In a top-down fashion, each Scope is recursively manipulated so
that its Selectors are removed and replaced by their matched elements. The goal of
this step is that every Scope is assigned a reference to an element of the internal Tem-
plate DOM Fragment. During the process Scopes may be multiplied if their Selector
matches multiple elements or if a list of Selectors is used. Also, Scopesmay disappear
if their Selector does not match any elements. This is done to ensure that every View
Adapter of a Binding inside a Scope has to only consider a single element.

109

6. Implementation, BindingJS

1 @binding view {
2 div {
3 attr:data-info <- "div"
4 span {
5 attr:data-info <-
6 "span in a div"
7 }}}

Listing 6.18: Binding Specification

1 <div id="template">
2 <div id="divA"></div>
3
4 <div id="divB">
5
6 </div>
7 </div>

Listing 6.19: Template DOM Fragment

Listings 6.18 and 6.19 serve as an example to explain what the algorithm does. There
are two Scopes, one with div and the other with span as its Selector. Since the al-
gorithm is top-down, the div Selector from line 2 is first evaluated. It only matches
elements which are descendants of the current context, which is the whole Template
DOM Fragment in the beginning. Therefore, the divs from lines 2 and 4 of listing 6.19
are matched. This leads to the Scope being cloned twice. This intermediate step is
shown in listing 6.20. Although the Scopes from lines 2 and 8 do not have a Selec-
tor anymore, we visualize their matched elements by the unique Selectors #divA and
#divB.

1 @binding view {
2 #divA {
3 attr:data-info <- "div"
4 span {
5 attr:data-info <-
6 "span in a div"
7 }}
8 #divB {
9 attr:data-info <- "div"
10 span {
11 attr:data-info <-
12 "span in a div"
13 }}}

Listing 6.20: Binding Spec. Intermed.

1 @binding view {
2 #divA {
3 attr:data-info <- "div"
4 }
5
6 #divB {
7 attr:data-info <- "div"
8 #spanB {
9 attr:data-info <-
10 "span in a div"
11 }
12 }
13 }

Listing 6.21: Binding Spec. Final

For both of the new Scopes their children are recursively processed now having the
element matched by their parent as their context instead of the whole Template DOM
Fragment. As a consequence, the span from line 4 does not match any elements and
the Scope is removed. The second span from line 10, however, matches the span ele-
ment, which is inside #divB in listing 6.19. The final result of the third preprocessing
step – again visualized as a Binding Specification – can be seen in listing 6.21.

110

6.3. Algorithms

4. Checking Uniqueness of Sockets

A Sockets may never refer to an element of the Template DOM Fragment which was
matched by another Scope. Verifying this can be easily done after step 3 by just count-
ing how many times any element appears as the element of any Scope. If for any
Scope that defines a Socket this count is greater than one, the validation fails and an
exception is thrown. It should be noted that it does not make sense to execute this val-
idation step earlier, since it would have to evaluate the Selectors of Scopes manually.
Counter-examples that would not pass this step include a Socket that is defined for
a Scope whose Selector matches more than one element, or a Binding Specification
where the same Label appears multiple times within the same Group.

5. Disambiguating Binding Scope Adapter Qualifiers

In section 5.1.2.3 we have shown that the Binding Scope is hierarchical. In particular,
this means that in some cases Binding Scope Adapter that use the same Qualifier refer
to the same or different elements of the Binding Scope. Renaming those Qualifiers in
such a way that they never refer to different elements, allows us to implement the
Binding Scope as a flat key value store that does not need to know about the hierarchy
of Scopes. The algorithm that performs this renaming was shown earlier in listing 5.17
and section 5.1.2. All we want to amend at this point is that the Qualifiers of Entry
and Key Adapter of Iterations have to be included. The listings 6.22 and 6.23 show a
Binding Specification before and after being transformed by step 5.

1 @binding view {
2 @name <- $name
3 span {
4 @text <- @name
5 text <- @text
6 }
7 div {
8 @text <- @name
9 text <- @text
10 }}

Listing 6.22: Binding Spec. Before

1 @binding view {
2 @temp1 <- $name
3 span {
4 @temp2 <- @temp1
5 text <- @temp2
6 }
7 div {
8 @temp3 <- @temp1
9 text <- @temp3
10 }}

Listing 6.23: Binding Spec. After

6. Extracting Iteration Collections

As shown in section 5.1.3, the Source Adapter of an Iteration may be of any type.
With the introduction of Expressions in section 5.3.6, complex statements comprising
multiple different Adapter can be used, too. Implementing Iteration becomes easier
if the Source Adapter of any Iteration always is a Binding Scope Adapter. This way,
Iteration never depends on the Presentation Model or Document Fragment, but needs
to only observe the Binding Scope.
The algorithm iteratively manipulates each iterated Scope. If it has a parent Scope,

a new Binding is added to that Scope. If no such parent Scope exists, it is first checked

111

6. Implementation, BindingJS

if the Source Adapter or Expression of the Iteration contains any View Adapter. Ac-
cording to section 5.1.3, this is not allowed and an exception is thrown. If no View
Adapter are present, a new Scope is added after the iterated Scope comprising the
new Binding and having the parent of the element from the iterated Scope as its own
element. Since the new Binding can not contain any View Adapter, this element has no
semantic meaning. For further preprocessing steps, however, an element is required
and choosing the parent element causes no extra efforts in dealing with this special
case.

1 @binding view {
2 #li (@entry, @key:
3 $collection) {
4 text <- @key + ". " + @entry
5 }
6
7 #div {
8 #span (@name: $names) {
9 text <- @name
10 }
11 }
12 }

Listing 6.24: Binding Spec. Before

1 @binding view {
2 #li (@entry, @key: @temp1) {
3 text <- @key + ". " + @entry
4 }
5 #template {
6 @temp1 <- $collection
7 }
8 #div {
9 @temp2 <- $names
10 #span (@name: @temp2) {
11 text <- @name
12 }}}

Listing 6.25: Binding Spec. After

Listing 6.24 shows a Binding Specification before, and listing 6.25 after the sixth
preprocessing step was executed. It should be noted that although the references to
@temp1 in both lines 2 and 6 would usually refer to different elements of the Binding
Scope, this is no longer the case after preprocessing step 5.

7. Preventing Multiple Iteration of an Element

This preprocessing step realizes the requirement from section 5.1.3 that one element
may not be iterated multiple times, since this would put semantics to the order of
Scopes. Every Iteration is iterated and its element stored. If one element occurs twice,
an exception is thrown. Listing 6.26 shows an example of a Binding Specification
which would fail this validation step if any li elements are present in the Template
DOM Fragment.

1 @binding view {
2 li (@entry, @key: $collection) {
3 // ...
4 }
5 li ($condition) {
6 // ...
7 }}

Listing 6.26: Step 7: Counter Example

112

6.3. Algorithms

8. Nesting Bindings of Scopes affected by Iterations

In step 9 both the Binding Specification and Template DOM Fragment are dismem-
bered to reflect Iterations. Therefore, any Scope that refers to an element that is
iterated must be a descendant of this Iteration. Listing 6.27 shows a simple Binding
Specification, where this is not the case. Assuming that the Template DOM Fragment
contains exactly one div element with id iteratedDiv, both Scopes refer to that div.

1 @binding view {
2 div {
3 attr:data-info <- "div"
4 }
5 #iteratedDiv (@entry, @key:
6 $collection) {
7 text <- @key + ". " + @entry
8 }
9 }

Listing 6.27: Binding Spec. Before

1 @binding view {
2 #iteratedDiv (@entry, @key:
3 $collection) {
4 text <- @key + ". " + @entry
5 div#iteratedDiv {
6 attr:data-info <- "div"
7 }
8 }
9 }

Listing 6.28: Binding Spec. After

All relevant Scopes are moved so that they are correctly nested (See Appendix A.4).
This can be done regardless of the hierarchy of Scopes, since it has no semantics
after steps 3 and 5. The process could lead to Scopes remaining empty if their only
child was a Scope that has been moved. Although they would not cause harm these
empty Scopes are removed. Listing 6.28 shows the Binding Specification after being
transformed by step 8.

9. Setup Iteration Tree

Figure 6.10.: Plain Iteration,
Class Diagram

Similar to the hierarchy of Scopes, Iterations
build a tree, too. Inside a Binding Specification
there may be an arbitrary number of Iterations
which again can have child Iterations. We treat
the whole Binding Specification as an Iteration
which is always present exactly once. A node of
this Iteration Tree comprises the information de-
picted in figure 6.10. Since we will later add an
additional tree of Expanded Iterations, we call a
node inside this tree a Plain Iteration.
Each Plain Iteration Node stores the Qualifiers

of its Entry, Key and Source Adapter as a string.
It also stores the last value it received from its
Source Adapter which might be a collection or
a Boolean value. While the template attribute
stores the part of the Template DOM Fragment
that is visible due to this Iteration, the part of the
Template DOM Fragment is stored in the itera-
tionTemplate which is added for new instances of the Iteration. In addition, the part
of the Binding Specification, which is covered by this Iteration, is stored in binding.

113

6. Implementation, BindingJS

The elements of Scopes in binding always refer to elements of iterationTemplate.
A placeholder array comprises information where child nodes would add their it-
erationTemplate inside the node’s own iterationTemplate. It should be noted that
such placeholders are not required for binding, since the semantics of its hierarchy
are no longer relevant after steps 3 and 5. At the moment, we do not consider the
attribute links. It will become relevant in step 11. Listings 6.29 and 6.30 show a
Binding Specification and a Template DOM Fragment which we are using to explain
the attributes in more detail.

1 @binding view {
2 #label {
3 text <- $labelText
4 }
5 #divA {
6 @temp1 <- $items
7 #liA (@item: @temp1) {
8 text <- @item
9 }}
10 #divPeople {
11 @temp2 <- $countries
12 #divCountry (@country: @temp2) {
13 @temp3 <- @country.names
14 #divNames (@name: @temp3) {
15 text <- @name
16 }
17 @temp4 <- hasAttribute(@country.flag)
18 #flagImg (@temp4) {
19 attr:src <- @country.flag
20 }}}}

Listing 6.29: Binding Specification

All previous preprocessing steps need to be taken into consideration so that all Iter-
ations already have a Binding Scope Adapter as their Source Adapter and every Scope
refers to exactly one element of the Template DOM Fragment. We did not rename all
Binding Scope Adapter, as done by step 5, to keep the example readable. There are
multiple and nested Iterations in the example. $items which is an array of strings is
iterated and bound to an li element. In addition, $countries and the names of the
people living in each of the countries are iterated. For each country a picture of its
flag is shown in an img element if the flag attribute of the country exists. The Plain
Iteration Tree for this Binding Specification together with its attributes is shown in
figure 6.11. The algorithm (see Appendix A.11) converting the abstract syntax tree
and the Template DOM Fragment into a Plain Iteration Tree works recursively in a
top-down fashion on the Iterations inside the Binding Specification.

114

6.3. Algorithms

1 <div id="template">
2
3 <div id="divA">
4 <li id="liA">
5 </div>
6 <div id="divPeople">
7 <div id="divCountry">
8 <div id="divNames"></div>
9
10 </div>
11 </div>
12 </div>

Listing 6.30: Template DOM Fragment

10. Add Sockets to Iteration Tree

Once the Plain Iteration Tree is built, an additional attribute sockets is added to each
node of the tree. We decided to factor out this step to keep step 9 comprehensible,
even though it would be possible to combine both algorithms into one. The purpose
of step 10 is to move all information about Sockets from the abstract syntax tree into
the Plain Iteration Nodes. Therefore, sockets is an array of items where each item
comprises the two attributes element and id. The element is a reference to an element
of the iterationTemplate of the node and id stands for the Label of the Socket. With
this array it becomes easier to implement the Socket API (see section 6.3.7).

11. Setup Expanded Iteration Tree

Our last preprocessing step consists of preparing an Expanded Iteration Tree for the
Iterator component that will be described in the next section. The Plain Iteration
Tree reflects Iterations as they appear within the Binding Specification or the abstract
syntax tree. The Expanded Iteration Tree, on the other hand, reflects the presence of
Iterations given their current collections. We will explain this in more detail later
but want to give an intuitive understanding with an example at this point. Aganin,
consider the Plain Iteration Tree from figure 6.10. If all attributes are left out, it can
be illustrated easier as the orange tree on the left of figure 6.13.

115

6. Implementation, BindingJS

Figure 6.11.: Plain Iteration Tree, Object Diagram

116

6.3. Algorithms

Figure 6.12.: Expanded Iteration,
Class Diagram

If we now assume that there are two
countries that are iterated, both the names
and flag Iteration are actually there twice.
What appears twice has nothing to do with
the items that are iterated, but only how
many times the Iteration itself is present.
That means that if there are two coun-
tries, there need to be two Iterations list-
ing all names and deciding whether the
flag should be shown. These new set of It-
erations that we call Expanded Iterations
builds a new tree. It is linked to the Plain
Iteration Tree, shown on the right of fig-
ure 6.13 colored in turquoise. The dashed
lines represent the links attribute of ev-
ery Plain Iteration node. In this case, ev-
ery node has exactly one link, with the ex-
ception of names and flag which have two.
The attributes that an Expanded Iteration
node stores are shown in figure 6.12. Be-
fore explaining the attributes in more de-
tail, we need to leap ahead to the next section where the idea of Iteration Instances is
explained in detail. An Iteration Instance is an element produced for each item in the
collection retrieved from the Source Adapter of the Iteration. In our previous example
the country Iteration had two instances that lead to the creation of two names and
flag Expanded Iterations.

Figure 6.13.: Plain together with Expanded Iteration Tree

117

6. Implementation, BindingJS

origin
Counterpart to the links from Plain Iteration. This reference is used to navigate
effortlessly to the originating Plain Iteration instance.

entryId
Qualifier of the Entry Adapter of this Iteration. This might be different from the
entryId of the Plain Iteration in origin. Since we disambiguate Binding Scope
Adapter Qualifiers, multiple Expanded Iterations that were created from the same
Plain Iteration need to use different Entry Adapter Qualifiers.

keyId
Qualifier of the Key Adapter of this Iteration. The reason why this information
has to be stored is the same as for entryId.

sourceId
Qualifier of the Source Adapter of this Iteration. The reason, why this information
has to be stored is the same as for entryId.

collection
Similar to Plain Iteration, the last value retrieved from the Source Adapter is
stored here. Again, this value might be different from the one in the Plain Itera-
tion because the collection might be retrieved from a parent’s Entry Adapter. In
the previous example we would expect that the source collections of both names
Iterations are different.

template
Clone of origin’s template. The original template needs to be cloned to be able
to provide a unique set of placeholders.

binding
Clone of origin’s binding with renaming performed.

placeholder
Clone of origin’s placeholder array, but referring to the template of this Ex-
panded Iteration.

instances
The set of Iteration Instances for this Expanded Iteration

instance
Reference to the Iteration Instance inside the instances set of the parent of
this Expanded Iteration. This information is necessary to decide which Iteration
Instance was responsible for the creation of this Expanded Iteration.

sockets
Copy of origin’s sockets, but elements referring to the template of this Ex-
panded Iteration.

placeholderIndex
In the Plain Iteration Tree any child can determine its placeholder by choosing
the one with the same index as itself in the array of children. This is not possible
in the Expanded Iteration Tree, since there might be more children than elements
in parent’s placeholder array.

118

6.3. Algorithms

ownVariables
Qualifiers of all Binding Scope Adapter that occurred within the binding of this
Expanded Iteration and that have never occured in any ancestor of this Expanded
Iteration.

bindingRenames
All renamings of Binding Scope Adapter Qualifiers performed by this Expanded
Iteration. If new Expanded Iterations are created, among other things, they need
to rename their Entry and Key Adapters. If those are used again in any child, they
need to know about this renaming.

sourceObserverId
This field is used to store the id retrieved from the Binding Scope when observ-
ing the Source Adapter. We will use it to stop observation once the Expanded
Iteration node is destroyed.

Managing changes to Expanded Iteration Tree and its Iteration Instances is the task
of the Iterator. The Preprocessor, however, provides the initial Plain and Expanded
Iteration Tree. Since before Bindings are active, the source attribute of any Plain
Iteration node is defined to be the empty collection, the Expanded Iteration Tree ini-
tially always consists of one element for the root and each of its immediate children.
While the root always has one Iteration Instance, none of the children have any Itera-
tion Instances initially. In the example from figure 6.13 this would mean that only the
Expanded Iteration nodes ROOT, li and country exist and that ROOT has one instance.
The algorithm (see Appendix A.12) setting up the Expanded Iteration Tree first cre-

ates an Expanded Iteration node from the root of the Plain Iteration Tree and adds a
single Iteration Instance to it. We will explain Iteration Instances in detail in section
6.3.5. In addition, it creates an Expanded Iteration node for each immediate child of
Plain Iteration Tree’s root and adds it to the previously generated root of the Expanded
Iteration Tree. When initializing new nodes of the Expanded Iteration Tree all infor-
mation from the originating Plain Iteration node is cloned. Therefore, special care
has to be taken to update all references to elements of the template that occur in the
binding, placeholder and the array of sockets. In addition, all Qualifiers of Binding
Scope Adapter that reside inside the binding need to be renamed so that they do not
interfere with other Expanded Iterations originating from the same Plain Iteration.
To conclude this section we want to show what the Expanded Iteration Tree, created

from the Plain Iteration Tree from figure 6.11, looks like. Figure 6.14 shows the tree
together with all the attributes previously introduced.

119

6. Implementation, BindingJS

Fi
gu
re
6.
14
.:
E
xp
an
de
d
It
er
at
io
n
Tr
ee
,O
bj
ec
tD
ia
gr
am

120

6.3. Algorithms

6.3.5. Iterator

Figure 6.15.: Iteration Instance,
Class Diagram

After the Preprocessor has initially set up
the Plain and Expanded Iteration trees it
is the task of the Iterator to manage them
by adding, replacing or removing Iter-
ation Instances. An Iteration Instance
comprises the attributes shown in figure
6.15. It represents one element of the it-
erated collection, and does not build a
tree itself, since it is attached to an Ex-
panded Iteration Node. However, it cre-
ates a second structure of references in-
side the Expanded Iteration Tree. Each
node is both the child of another Ex-
panded Iteration Tree, but also the child
of a certain instance inside the array of instances of its parent.

entryId
Qualifier for the Binding Scope which is used inside binding to access the Entry.

keyId
Qualifier for the Binding Scope which is used inside binding to access the Key.

key
Key of the element from the Expanded Iteration’s collection that is represented
by this Iteration Instance

template
Reference to a part of the DOM Fragment which is managed by this Iteration
Instance.

binding
Binding Specification that is applied to template.

placeholder
List of placeholders that can be used by child instances to plug in their template.

sockets
List of sockets used to notify each of them when this Iteration Instance is created
or destroyed.

bindingRenames
List of renames of Binding Scope Adapter Qualifier done for this Iteration In-
stance.

bindingObserver
This list is filled when the binding of this Iteration Instance is initialized. It is
used to stop observing the Adapter when the binding is shut down.

121

6. Implementation, BindingJS

Activating the View Data Binding

Initially, there only exists one Iteration Instance, and that is the one for the root Ex-
panded Iteration. It is neither removed nor changed and is created by just copying the
attributes template, binding, placeholder, bindingRenames and sockets from the
root Expanded Iteration. When the View Data Binding is mounted the template of this
root Iteration Instance is inserted at the given position. In the example from figure
6.14 this would be equal to the template shown on the upper left.
When activate is called, first, the binding for the root Iteration Instance is initial-

ized (See Appendix A.13). We will explain how this is done in section 6.3.6. After that,
the Source Adapter of every immediate child in the Expanded Iteration Tree is ob-
served. If it changes its value, the algorithm described in the next section is executed.
We expect that, upon initializing the root instance’s binding, the collection of each
Expanded Iteration Node is set to a new value by that binding.

Reacting to Changes

To reflect changes to the collection of an Expanded Iteration Node the new collec-
tion from the Binding Scope is compared to its previous value. There are two cases
Each and When. If the new collection is a Boolean value, the Iteration represents
When. In that case, there are two possibilities that require a change. First, if the old
value was true and the new value is false, it means that the Iteration was previously
visible and should now be invisible. To realize this the algorithm acts as if the only
Iteration Instance was removed from the Expanded Iteration node. Second, if the old
value was false and the new value is true, an Iteration Instance with a key of 0 and
a value of true is added.
For the other case where the new collection actually is a collection we use the Leven-

shtein Distance [Lev66] for arrays, and a simple comparison algorithm for name-based
hash maps to generate a set of changes that transforms the old into the new collection.

Surgical Updates with Levenshtein Distance

The edit-distance algorithm that we use is well-known as the Levenshtein Distance
operating on strings . Strings are nothing but a list of characters. With this we can
modify the algorithm so that it compares two collections instead of two strings. Also,
our algorithm does not only calculate the number of operations, but also tells us which
operations need to be performed. There are three types of operations.

add
A new item needs to be inserted at a certain index

remove
An old item needs to be removed at a certain index

replace
An item needs to be replaced by another item at a certain index

To give an intuitive understanding of what the algorithm produces, listing 6.31 shows
the result of calculating the Levenshtein Distance. The first parameter in line 1 is the
old, and the second in line 2 the new collection.

122

6.3. Algorithms

1 var result = levenshtein(["a", "b", "c", "d"],
2 ["b", "c", "e", "f"])
3 result.each(change => logAndApply(change))
4 /*
5 - Replace "d" with "f" at position 3
6 ["a", "b", "c", "d"] => ["a", "b", "c", "f"]
7 - Add "e" after position 2
8 ["a", "b", "c", "f"] => ["a", "b", "c", "e", "f"]
9 - Remove "a" at position 0
10 ["a", "b", "c", "e", "f"] => ["b", "c", "e", "f"]
11 */

Listing 6.31: Levenshtein Example Call

With this algorithm (see Appendix A.14) we solve the problem of surgical updates.
First, to compare the new to the old collection all References in the new collection
need to be replaced by their underlying values. The old collection was stored after
References were already resolved so that it is not necessary to do repeat this proce-
dure.
The implementation uses the dynamic programming approach which needs a two-

dimensional matrix to store intermediate results. The space and time complexity of
the algorithm is in O(|new collection| ∗ |old collection|) for storing and filling the
matrix.

Adding Iteration Instances

In figure 6.16 a Plain Iteration Tree is shown in blue together with its Expanded Iter-
ation Tree in orange. The dotted green lines represent links and the red boxes stand
for Iteration Instances. The figure shows clearly that nodes of the Expanded Iteration
Tree actually have Iteration Instances as their parent. In the example no Iteration
other than the root and B have any Iteration Instances. In this case, B has two in-
stances which lead to the duplication of C and D.
We now want to explain the algorithm (see Appendix A.15) that adds new Iteration

Instances to any node of the Expanded Iteration Tree. First, a new instance is created
and a new child Expanded Iteration node is added for each child in the corresponding
Plain Iteration node. After that, the binding of the newly generated instance is ini-
tialized. We will show this part in section 6.3.6. If the collection that is iterated is an
array, the keys of all existing Iteration Instances need to be refreshed. All keys that
are greater or equal to the newly inserted key need to be increased by one. In the
example adding an instance to B would mean that the nodes C and D from the Plain
Iteration Tree are used to create two new Expanded Iteration Nodes.
To create the new instance binding placeholder and sockets are cloned in the

same fashion as when creating a new Expanded Iteration Node. Every new instance
renames all own variables, and the Qualifier of all Entry and Key Adapter if they are
used within binding. In addition, everything that the parent of the instance renamed
is changed according to the same rules. After the Entry and Key Adapter are renamed,
their correct values are set in the Binding Scope.

123

6. Implementation, BindingJS

Figure 6.16.: Iteration Components, Simplified

The new template is injected into the template of its parent. Since ultimately the
root instance’s template is mounted into the view port and every instance injects its
template into its parent template, the template of Iteration Instances is always visible
in the web browser. There are two cases, one where there are already other instances
and it is known where to insert the new template, and the other where there is no
instance or it is unknown where to insert the template. In the first case, the template is
inserted after the template of that instance which has a key equal to the key which was
determined by calculating the Levenshtein Distance. In the second case, the template
is inserted after the correct placeholder of its parent instance. Last, the new instance
object is created and added to the Expanded Iteration Node. All observers of Sockets
that were just injected as part of the template are called.

Removing Iteration Instances

Removing an Iteration Instance does the exact opposite of any step made during its
creation in reverse order. First, the algorithm (see Appendix A.16) shuts down the
binding. We will show how this is done in section 6.3.6. Each child of the instance
is destroyed and the instance itself is removed. When removing an instance from an
array-based Iteration all keys of Iteration Instances that are greater or equal to the
removed key need to be decreased by one.
An Expanded Iteration Node is destroyed by first observing its Source Adapter. To

recursively destroy its children its collection is manually set to the empty collection or
false depending on its previous value. Last, the Expanded Iteration Node is removed
from the links of its origin.

124

6.3. Algorithms

The Iteration Instance itself is removed by first calling all observers of Socketswhich
are part of its template that is detached right after. Last, theQualifiers of its Entry and
Key Adapter are destroyed in the Binding Scope to stop observing probableReferences
that are stored inside them.

Replacing Iteration Instances

Replacing Iteration Instances is the easiest of the three algorithms. All that has to be
done is to notify the affected child about a change to its Source Adapter by setting it to
its new value in the Binding Scope. This indirectly invokes the procedure that reacts
to changes. At some point of recursion, the actual structural difference then becomes
add or remove. Consider the model from listing 6.32 where binding first iterates over
each group of people and then over their names.

1 var model = [["Alice", "Eve"], ["Bob", "Mallet"]]

Listing 6.32: Presentation Model

If now a new name is added to the second array of male names, a call to replace
at index 1 on the first level of Iterations is issued. On the next level the new name
is recognized and a call to add is made. It should be noted that changes to elements
themselves, such as changing the name Bob to Max, are not handled by the Iterator
but the Propagator (see section 6.3.6).

Deactivating the View Data Binding

When deactivate is called for an instance of View Data Binding the opposite steps
performed when activating it are executed in reverse order (see Appendix A.10). The
process is very similar to that when destroying instances of Expanded Iteration Nodes.
The collection of each immediate child of the Expanded Iteration Tree’s root is set
to the empty collection or false and the binding is shutdown.

125

6. Implementation, BindingJS

6.3.6. Propagator
The Propagator is the component that sets up and shuts down Bindings to connect
the three Data Sources which are the DOM Fragment that is part of the Iteration
Instances, the Binding Scope and the PresentationModel. It uses both the Adapter and
Connector Repositories to resolve any reference to such components in a Binding. We
have already shown its basic algorithm in section 5.1.2 and listing 5.12. The algorithm
there, however, is simplified and, among other things, does not consider how to exactly
address the different types of Adapter.

Initializing an Iteration Instance’s Bindings

The actual implementation is divided into two parts. For each Scope in the abstract
syntax tree of the Iteration Instance’s binding, first, all of its Bindings are iterated to
observe their Source Adapter. Whenever this is done for each of the three possible
Adapter types, the resulting observer id is stored in an array. This array is used to
fill the bindingObserver attributes of the Iteration Instance. It allows to shut down
those observers if necessary. Since implementing the observe method of an Adapter
is optional, their presence needs to be checked, and an exception thrown if they are
missing.
After all observers are in place each of them is executed in a certain order. First, all

Model, then all Binding and last all View Adapter are executed. This is done to ensure
that values coming from the Presentation Model always have priority over those from
the DOM Fragment. Since the DOM Fragment is inserted right before the Bindings
are initialized, it usually contains no meaningful values. For example, with a Two-Way
Binding between the value of a text box and an attribute of the Presentation Model
the value of the text box initially is always empty. We would expect that it is initialized
with the value from the PresentationModel, instead of the attribute of the Presentation
Model being overwritten by an empty string.

Shutting down an Iteration Instance’s Bindings

All observer ids together with the Adapter, where the observer was set, were stored
in an attribute of the Iteration Instance when initializing its Bindings. The only thing
that has to be done to shut down these Bindings is stopping their observers. This is
done by calling the method unobserve for each Adapter in bindingObserver.

Converting a set of Paths to structured JSON

As shown in line 18 of listing 5.12 in section 5.1.2, the set of Paths returned from an
Adapter needs to be somehow converted into structured JSON. Listing 6.33 shows the
algorithm achieving this.
As its input the algorithm needs the Adapter that produced the set of paths, the

originalPath, which was used to call the method getPaths and – to initialize Ref-
erences – a reference to the Presentation Model model and the associated element
from the DOM Fragment. First, from lines 2 to 12 the basic structure of the result
is created. It is done by iterating all Paths and iterating their comprised items while
leaving out those elements that were already in the originalPath. To illustrate this,
listing 6.34 shows a sample call to the method and what is stored in result after line
12.

126

6.3. Algorithms

1 function convert(adapter, originalPath, paths, model, element) {
2 var result = {}
3 foreach (path in paths) {
4 var pointer = result
5 foreach (var j = originalPath.length; j < path.length; j++) {
6 var key = path[j]
7 if (!pointer[key]) {
8 pointer[key] = {}
9 }
10 pointer = pointer[key]
11 }
12 }
13
14 foreach (path in paths) {
15 var pointer = result
16 for (var j = originalPath.length; j < path.length - 1; j++) {
17 var key = path[j]
18 pointer = pointer[key]
19 }
20
21 if (path.length - originalPath.length > 0) {
22 if (pointer[path[path.length - 1]] == {})) {
23 var reference = new Reference(adapter, path)
24 if (adapter.type() == "view") {
25 reference.setElement(element)
26 } else if (adapter.type() == "model") {
27 reference.setModel(model)
28 }
29 pointer[path[path.length - 1]] = reference
30 }
31 } else {
32 var reference = new Reference(adapter, path)
33 if (adapter.type() == "view") {
34 reference.setElement(element)
35 } else if (adapter.type() == "model") {
36 reference.setModel(model)
37 }
38 result = reference
39 }
40 }
41 result = recognizeArrays(result)
42 return result
43 }

Listing 6.33: Converting a set of Paths to Structured JSON

127

6. Implementation, BindingJS

1 var originalPath = ["p"]
2 var paths = [["p", 0, "name"],
3 ["p", 0, "age"],
4 ["p", 1, "name"],
5 ["p", 1, "age"]]
6 convert(..., originalPath, paths, ...)
7 /* resultAfterLine12 =
8 {
9 0: {
10 name: {},
11 age: {},
12 },
13 1: {
14 name: {},
15 age: {}
16 }
17 } */

Listing 6.34: Example Call to convert

Wherever there are empty objects {} in result, this entry cannot be structured
further and must be a primitive value. For each Path this condition is checked in line
22 after navigating to the correct position in result from lines 15 to 19. The condition
in line 21 is false if, and only if, path and originalPath are equal. This means that
there is only one element in paths and that result is empty. This implies that result
itself needs to be a Reference which is initialized in lines 32 to 38. An example when
this is happening is the Value Adapter that we have presented in listing A.5. Convert,
in that case, would be called with originalPath = [] and paths = [[]]. As the last
step, arrays are recognized by checking the keys of every element on each level. If
they form a contingent series of numbers starting at 0, the element is converted into
an array. For our previous example the overall result of the method is shown in listing
6.35.

1 var result = [
2 {
3 name: Reference(adapter: ..., path: ["p", 0, "name"]),
4 age: Reference(adapter: ..., path: ["p", 0, "age"])
5 },
6 {
7 name: Reference(adapter: ..., path: ["p", 1, "name"]),
8 age: Reference(adapter: ..., path: ["p", 1, "age"])
9 }
10]

Listing 6.35: Example Result of Call to convert

128

6.3. Algorithms

Converting References to Values

Before writing the structured JSON back to the Sink Adpater of a Binding, it needs
to be converted so that any remaining References are replaced by their values. This
can be achieved by a recursive algorithm. For the example from listing 6.35 this would
mean that each Reference is replaced by whatever is returned by a call to its getValue
method.

Cycle Detection

Our Concepts allow to specify cyclic Bindings. The easiest example of this is shown
in listing 6.36, but there could be also cycles that span over more than two Bindings
such as the one in listing 6.37.

1 value <- $value + 1
2 value -> $value

Listing 6.36: Simple Cycle

1 @foo <- $value + 1
2 value <- @foo
3 @bar <- value
4 $value <- @bar

Listing 6.37: Complex Cycle

The first observation is that such cycles cannot be recognized by building a graph
of Adapter that influence each other, and by checking this graph for cycles. Such a
graph for listing 6.37 is shown in figure 6.17. The simplest counter example why this
is not working is any Two-Way Binding.

Figure 6.17.: Influences of Bindings as Graph

Since we do not support a Connector that delays the propagation of a Binding, the
second observation is that there are no useful cycles [Mey+]. This means that a cycle
is always an error, and the only reason why we would want to detect it is to help a
developer finding that error. This behavior is well-known from Microsoft Excel where
formulas of cells can create cycles. If that is the case, Microsoft Excel highlights the
affected cells and warns the user about the erroneous input.
To solve the issue we could implement Propagation so that whenever the value of

an Adapter changes, first, all possibly affected other Adapters are collected. If any of
those Adapter is then written more than once with a different value, a cycle would be
detected. This, however, requires that there is a way to differentiate between Adapter

129

6. Implementation, BindingJS

callbacks that were caused by an external change and such that arose because Prop-
agation internally changed the value of the Adapter. Including this feature into the
Adapter API would, however, create an unreasonable amount of code, which would
have to be implemented for each Adapter. Also, considering that cycle detection does
not increase the expressiveness of our Concepts, but would only help debugging er-
rors, we decided not to include any cycle detection into BindingJS.

Pausing and Resuming Propagation

To pause an instance of View Data Binding every place where any Data Source is ob-
served needs to be modified so that the callback of the observer checks if the View
Data Binding is currently paused. In total, there are two places where such an ob-
servation happens, first in the Propagator and second the Binding Scope. Instead of
setting up the observation, as shown in listing 6.38, we modify its callback so that it
stores all incoming notifications as in 6.39.

1 dataTarget.observe(
2 id, function () {
3 callback()
4 }
5)

Listing 6.38: Observation

1 dataTarget.observe(
2 id, function () {
3 if (!paused) {
4 callback()
5 } else {
6 pauseQueue.push(callback)
7 }})

Listing 6.39: Pausable Observation

By doing this no Propagation is performed while the View Data Binding is paused.
Upon resumption all that has to be done is to execute all accumulated callbacks from
the two queues of the Binding Scope and the Propagator.

6.3.7. Sockets
The Iterator takes care about calling the observers for certain Sockets when Iteration
Instances are added and removed. The View Data Binding instance stores a list of both
types of observers and adds all callbacks that come in through onInsert and onRemove
to those lists. When an Iteration Instances is added or removed, all of the Labels of
its Sockets are compared to those previously registered and each callback is called.
The information about sockets, their id and associated element that are required to
execute the callback are already provided as attributes of any Iteration Instance. The
keys array can be easily built by recursively traversing the tree of Expanded Iterations.
To implement the methods instances and instace of the Socket API we use an algo-

rithm that recursively traverses all Iteration Instances and their sockets attributes.

130

7. Evaluation, BindingJS
In this chapter we evaluate the result of our work, BindingJS, by scoring it in the same
fashion as in chapter 3. In addition, we use the examples from section 2.2 to show
how BindingJS can be used to put them into action and what benefits come with its
application.

7.1. Comparison with other Rich Web Client Libraries
In section 3.3 we evaluated and compared different View Data Binding libraries. To
figure out if our approach and implementation are viable alternatives to the many
libraries already present, we use the criteria catalog from section A.1.1 to grade Bind-
ingJS.

Compatibility

Criterion Score Reason

Adaptability to
Hierarchical

Model
+1

Being compatible with ComponentJS was one of
our goals that we reached by performing all
accesses to the Presentation Model exclusively
through Adapter.

Browser Support 0

BindingJS was tested with the most recent versions
of all relevant browsers. Since we strive for a
modern solution and use cutting-edge technology,
such as the latest language version of JavaScript
and HTML 5 features, we cannot guarantee that
BindingJS is compatible with older web browsers.

Compatibility with
jQuery +1 jQuery is the only dependency of BindingJS

Extensibility +1
Users of BindingJS may plug-in arbitrary Adapter
or Connectors through its plug-in API (see section
6.2.4).

Observation
Mechanism +1

All accesses to the Presentation Model are
performed exclusively through Adapter in
BindingJS, and it is easy to add new Adapter.

Total +4

Table 7.1.: BindingJS — Compatibility

131

7. Evaluation, BindingJS

Design

Criterion Score Reason

Amount of Logic
in View +1

Since BindingJS primarily uses an external file to
define the Binding Specification, the view
component typically comprises no logic at all.
Iterating and conditionally displaying elements is
possible, but it is not visible in the view
component. Therefore, a grade of zero would not
be justified.

Binding Separable
from View +1 This is one of the unique characteristics of

BindingJS.
Efficiency by
employing

Surgical Updates
+1

BindingJS uses a modified edit distance algorithm
to minimze the number of changes to Iterations
(see section 6.3.5).

Intermediate
Representation +1

The layers of abstraction in BindingJS are its
Iteration Trees and Iteration Instances (see section
6.3.5).

Paradigm for
Binding +1

Specifying the Binding Specification in an external
file covers the declarative case. We even plan on
adding the feature that this can be done inside the
view component (see chapter 8). In addition,
BindingJS offers to imperatively add new Bindings
by spawning new instances of View Data Binding
through create. This can be done at any time with
arbitrary Bindings that might be defined in-place.

Limitation of
Scope to Data

Binding
+1

The only parts of BindingJS in question could be
Identification, Sockets, and Templates. As we have
shown in chapter 5, leaving these out would
render the library inappropriate for modular single
page applications.

Template Sources +1 BindingJS offers four different ways of providing
the Template DOM Fragment (see listing 6.4).

Total +7

Table 7.2.: BindingJS — Design

132

7.1. Comparison with other Rich Web Client Libraries

Feature Coverage

Criterion Score Reason

Animations -1
We decided to not support animations because
they present logic that typically should not be
executed by a View Data Binding library.

Binding to DOM
Events +2 The on Adapter allows to store arbitrary DOM

events in the Presentation Model.

Chains +1 Performing multiple transformation steps inside a
Binding is possible by using a Connector Chain.

Converter +1
Modifying values as they are propagated through a
Binding is a typical use case for a Connector (see
section 5.1.2.2).

Expressions +2
The set of Expressions provided by BindingJS is
rich (see section 5.3.6) and even includes regular
expressions.

Filter +1

This feature can be realized with a Connector. An
example of a Connector modifying a list is shown
in listing 6.12. Although the implementation sorts
the list, it should be easily imaginable how it can
be changed into a Filter.

Subscription to
Events Triggered

Internally
0

Although it is possible to register Socket observer,
in general, there currently is no mechanism of
listening for changes of individual Bindings.

Two-way binding +1 This feature is a Convenience Concept of
BindingJS (see section 5.3.1).

Validation +2
Validation tasks may be performed by Connectors.
Since their logic is implemented with JavaScript,
there are no limitations regarding its complexity.

Total +9

Table 7.3.: BindingJS — Feature Coverage

133

7. Evaluation, BindingJS

Usability

Criterion Score Reason

Changes
necessary to

Existing Solution
+1

We do not expect that much of an existing solution
has to be rewritten in order to employ BindingJS.
However, there lies effort in writing a suitable
Presentation Model Adapter if none is available
already.

Efficiency in Big
Applications 0

Although our implementation is designed to be as
efficient as possible even in big applications, there
are currently no proofs other than theory for this.

Learning Curve +1

We took care that the syntax of a Binding
Specification defined with BindingJS remains as
readable as possible. With the high number of
examples within this thesis we expect the learning
curve to be steep.

Number of
Dependencies 0 jQuery is the only dependency of BindingJS

Size of the
Framework 0

The Parser is responsible for most of the libraries
code, but with currently 134kB it does not exceed
200kB

Intuitivity and
Maintainability of

the Syntax
+1

During the process of designing BindingJS, we
performed multiple interviews with software
engineers. Within those short talks, the person
without any prior knowledge of BindingJS or its
syntax was presented a Binding Specification and
asked what he or she thinks is expressed by it. By
evaluating the results from these answers we
could increase the intuitivity of our syntax step by
step and received positive feedback.

Total +3

Table 7.4.: BindingJS — Usability

134

7.1. Comparison with other Rich Web Client Libraries

Support

Criterion Score Reason
Number of
Answered

Questions on
StackOver-
flow.com

-1 Since BindingJS has not been promoted and
published, there is no community activity yet.

Number of
Contributors on

GitHub
0 The current contributors to the project are the

three authors.

Number of Stars
on GitHub -1 See Number of Answered Questions on

StackOverflow.com
Google Query
about Typical
Question

-1 See Number of Answered Questions on
StackOverflow.com

Quality of
Documentation +1

This thesis comprises the documentation of
BindingJS. All features and their implementations
are explained in detail and illustrated with
examples.

Total -2

Table 7.5.: BindingJS — Support

135

7. Evaluation, BindingJS

Reliability

Criterion Score Reason
Architectural
Cleanliness +1 We defined the architecture of BindingJS in section

6.1.

Implementation
Cleanliness 0

The algorithms operating BindingJS are already
difficult to understand when presented as
simplified pseudo-code. Although the actual
implementation uses comments, without the
accompanying notes from this thesis and with the
additional complexity because of technical
limitations, the code of BindingJS cannot be fully
understood easily and needs to be optimized for
this in the future.

Maturity -1
The implementation of BindingJS was initiated at
the same time as writing this thesis and, therefore,
cannot be more mature than six months.

Development
Activity +1

Test Coverage 0
BindingJS employs mocha for unit and Selenium
IDE for integration tests (see section 6.1). Their
coverage, however, needs to be increased in the
future.

Version -1 See Maturity

Total 0

Table 7.6.: BindingJS — Reliability

Interpretation
Summing up all intermediate scores yields a total score of twenty-one which is more
than our previous winner KnockoutJS graded with eighteen points. Although, Bind-
ingJS has the obvious disadvantage of its low scores in the Support and Reliability
category, it is convincing because of its Design and its Compatibility. Our goal was to
create a separable, reactive, model-agnostic approach to View Data Binding. Each of
these attributes materializes itself especially within those two categories that are not
adequately addressed by existing solutions. Many of the features that we evaluated
in the Support and Reliability category will improve in the future, once BindingJS is
made available to a larger public and is provided time to mature. All scores that were
presented should be taken with a grain of salt. Although they seem to be absolute if
different features, evaluation instructions or weights were used, the result might be
completely different.

136

7.2. Employment in Applications

They, however, show clearly that BindingJS is not just another View Data Binding
library, but has unique characteristics while uniting many advantages of existing so-
lutions. If it manages to be accepted by a broader audience, it could have significant
impact on future and existing web applications due to its holistic and flexible nature.

7.2. Employment in Applications
In section 2.2 16 lines of code were necessary to set up a Two-Way Binding between a
text box and an attribute from the Presentation Model. We can now express the same
in listing 7.1 with the help of BindingJS. Both Presentation Model and Template DOM
Fragment are unchanged, but instead of unmaintainable boilerplate code only three
lines of code are necessary to express the Binding from lines 11 to 13. In addition,
the library itself needs to be set up from lines 22 to 30 and included from lines 6
to 8. This means that, in total, the amount of code has only been reduced marginally.
The maintainability and readability of the code, however, has tremendously increased.
BindingJS also was not designed to express such minimal examples with the least
amount of code possible. The initialization effort always stays the same no matter how
much is added to the Binding Specification. If we extend the example so that not only
one name from the Presentation Model is bound, but a list of names, in BindingJS this
would only require adding an Iteration in line 11. Doing this with JavaScript would
require a great amount of code even if surgical updates were not considered.

1 <html>
2 <head>
3 <title>BindingJS - Textbox</title>
4 <script src="jquery.js"></script>
5 <script src="binding.js"></script>
6 <script src="valueAdapter.js"></script>
7 <script src="jsonAdapter.js"></script>
8 <script type="text/binding">
9 // Binding Specification
10 #username {
11 on:change +> value <-> $user.name
12 }
13 </script>
14 <script type="text/javascript">
15 // Presentation Model
16 var model = {
17 user: { name: "Johannes" }
18 }
19
20 $(function() {
21 BindingJS
22 .plugin("value", ValueAdapter)
23 .plugin("$", JsonAdapter)
24 .create()
25 .template("#template")

137

7. Evaluation, BindingJS

26 .binding($("script[type=’text/binding’]"))
27 .model(model)
28 .mount("#template")
29 .activate()
30 })
31 </script>
32 </head>
33 <body>
34 <!- Template DOM Fragment ->
35 <div id="template">
36 <input id="username" type="text" />
37 </div>
38 </body>
39 </html>

Listing 7.1: Binding a Text Box

7.2.1. TodoMVC
Since a full implementation of TodoMVC (see section 2.2.1) would go beyond the scope
of this section, we restricted listing 7.2 to the most important features. It is structured
into three parts, the Binding Specification from lines 6 to 47, the Presentation Model
from lines 50 to 60 and the Template DOM Fragment from lines 75 to 93. The Presen-
tation Model comprises a function getRemaining and a list of todos that each have
the attributes title and completed. The Template DOM Fragment is structured into a
header where new todos may be entered into the text box from lines 78 and a repeating
part for each todo from lines 82 to 89.
If a user enters text into the text box from line 78 and presses enter, a new todo

having the text entered as its title is added to the list of todos and the value of text box
is reset to an empty string. We can easily realize this behavior with the two Bindings
from lines 8 and 10. The Connector push adds the element that it receives as its
Parameter to its input. By using a Hash Expression it is possible to directly express
the new todo item as a Parameter. In addition, the Expression neatly uses the value
Adapter to initialize the field title of the Hash. The Binding from line 8 itself would
create a cycle that would add new todos over and over, but since it is initiated by the
on Adapter it is only executed if the enter key is pressed. The Binding from line 10
resets the value of the text box to an empty string. To ensure that it is executed after
the Binding from line 8, it listens for the keyup instead fro the keydown event through
the on Adapter.
For every todo item the part of the Template DOM Fragment from lines 82 to 89 is

repeated. The Concept of Iteration is perfect to realize this in line 13. The current
todo item and its index are stored in @todo and @index respectively.

• Each todo item comprises a check box that reflects the completed state of the
item. Only line 15 is required to create this connection. Since the attr Adapter
usually does not implement an observemethod, it is used together with an Initia-
tor that starts the propagation of the Binding whenever the check box is clicked.
It should be noted that a change to the Presentation Model is always reflected by

138

7.2. Employment in Applications

the state of the check box because the Initiator does not affect this direction of
the Binding.

• Apart from marking a todo item as completed, it can also be deleted by pressing
the button from line 86. The Binding in line 18 that realizes this behavior works
similar to the one adding new todo items. The Connector destroy removes the
element from its input that is at the index of its Parameter.

• The label from line 85 displays the title of each todo item to the user which
presents a good use case of the text Adapter in line 21.

• By double clicking any todo item a user may edit its title. The editing can be
aborted by pressing escape so that whatever was entered into the text box from
line 88 is discarded. If, however, enter is pressed the title of the todo is over-
written by the new value. Through CSS the text box is only visible to the user if
the class editing is added to the li element from line 82. By default, any todo
item is not in the editing state which we express by the One-Time Binding from
line 24, initializing the Binding Scope Adapter editing with false once. Line 25
expresses that the class editing should be added to the li element whenever
@editing becomes true and removed otherwise.
Line 28 stores the todo’s title into @tempTitle. Since by default, only a Reference
would be stored the Connector getValue is used that resolves this Reference to
its actual underlying value. This temporary title can now be used to bind it to the
value of the text box in line 31. This way, the Presentation Model is not directly
synchronized, but only if enter is pressed in line 29 which also leads to the editing
mode being left in line 30. To implement the abort behavior we use a Sequence
of Initiators to also leave the editing mode if escape is pressed.
Last, there needs to be a way to enter the editing mode which is realized in line
34 that sets @editing to true whenever the label from line 85 is double clicked.

A footer after all todo items shows howmany todos are still uncompleted. It contains
text, such as 3 items left or 1 item left. First, to determine the number of items left
we use the function getRemaining from the Presentation Model in line 40. Although
a function can be observed, a notification would only be issued if the definition of the
function changes. The expected behavior, however, is that the Binding from line 40
is propagated whenever getRemaining might return a different value. We can make
the attributes from the Presentation Model that the result of the function depends on
explicit by using them as Initiators. Line 44 decides whether the singular or plural of
the term item needs to be used to correctly display the text. The Connector count is
an Aggregator that returns the number of elements in its input collection. Based on
this number, line 44 changes the text appropriately. It should be noted that we could
only use $todos.length if the Presentation Model includes the length property in its
Paths returned for todos.
Although listing 7.2 is shortened and does not show a full implementation of

TodoMVC, it clearly illustrates how much logic can be expressed with just around
40 lines of code for the Binding Specification. By combining all of our Concepts intel-
ligently, complex semantics can be expressed in a compact way without polluting the
Template DOM Fragment or any other place with additional information.

139

7. Evaluation, BindingJS

1 <html>
2 <head>
3 <title>BindingJS - TodoMVC</title>
4 <!- Include stylesheet, jQuery, BindingJS, Adapter & Connectors ->
5 <script type="text/binding">
6 @binding TodoMVC {
7 #new-todo {
8 on:keydown("enter") +>
9 $todos -> push({ completed: false, title: value }) -> $todos
10 on:keyup("enter") +> "" -> value
11 }
12
13 #todo-list li (@todo, @index: $todos) {
14 .view input {
15 on:click +> attr:checked <-> @todo.completed
16 }
17 .view button {
18 on:click +> $todos -> destroy(@index) -> $todos
19 }
20 .view label {
21 text <- @todo.title
22 }
23
24 @editing <~ false
25 class:editing <- @editing
26
27 .edit {
28 @tempTitle <- getValue <- @todo.title
29 on:keydown("enter") +> @tempTitle -> @todo.title
30 on:keydown("enter"), on:keydown("esc") +> false -> @editing
31 value <-> @tempTitle
32 }
33 label {
34 on:dblclick +> true -> @editing
35 }
36 }
37
38 #stats {
39 strong {
40 text <- $getRemaining <+ $todos
41 }
42 span {
43 @count <- count <- $todos
44 text <- @count == 1 ? "item" : "items"
45 }
46 }
47 }
48 </script>

140

7.2. Employment in Applications

49 <script type="text/javascript">
50 var model = {
51 todos: [],
52 getRemaining : function () {
53 var count = 0
54 for (var i = 0; i < model.todos.length; i++) {
55 var item = model.todos[i]
56 if (item.completed) {
57 count++
58 }}
59 return count
60 }}
61
62 $(function() {
63 var binding = BindingJS
64 .create()
65 .plugin(/* ... */)
66 .template("#todoapp")
67 .binding($("script[type=’text/binding’]"))
68 .model(model)
69 .mount("#todoapp")
70 .activate()
71 })
72 </script>
73 </head>
74 <body>
75 <section id="todoapp">
76 <header id="header">
77 <h1>todos</h1>
78 <input id="new-todo" placeholder="What needs to be done?">
79 </header>
80 <section id="main">
81 <ul id="todo-list">
82
83 <div class="view">
84 <input class="toggle" type="checkbox">
85 <label></label>
86 <button class="destroy"></button>
87 </div>
88 <input class="edit">
89
90
91 </section>
92 <div id="stats"> left</div>
93 </section>
94 </body>
95 </html>

Listing 7.2: TodoMVC

141

7. Evaluation, BindingJS

7.2.2. msg TimeSheet

Figure 7.1.: Input Screen,
msg TimeSheet

In section 2.2 we have introduced an internal applica-
tion that is used at msg systems AG. It can be used
by employees to register their working hours and of-
fers both a desktop and a mobile layout which au-
tomatically switches based on the size of the view
port. To evaluate BindingJS we modified one of its
modules called input screen to use the library instead
JavaScript code for its View Data Binding. The com-
posite which is shown in figure 7.1 is only visible in
the mobile version of the TimeSheet application. It is
used to enter data about the distribution of working
hours on a single day. Apart from working hours, it is
possible to specify what portions of the day have been
used for specific projects at the bottom of the screen.
To operate the module lots of View Data Binding

is required. Interactions that are made by the user
result in setting event attributes in the Presentation
Model. Based on the values entered in the form, cer-
tain elements appear or are hidden. For instance, the
text box that allows a user to enter a reason for work-
ing more than ten hours only appears if the duration
becomes greater than ten hours, or the appropriate
tick is set.
Since the TimeSheet application uses ComponentJS

to structure its code, the module consists of mainly
four components. The template which comprises
HTML code providing the initial visual structure of
the Composite. The controller written in JavaScript
that reacts to changes to the model or that changes
the model. The view that sets up the template and in
particular its View Data Binding. The ComponentJS
model that equals our understanding of a Presentation Model.
When employing BindingJS mainly the view component is changed so that all View

Data Binding related logic is extracted from it into an own file comprising a Binding
Specification. Since the code of the application is not publicly available and confiden-
tial, we measure the impact of BindingJS in lines of code. While all other modules
did not significantly increase or decrease their amount of code, we could cut down the
view component from 802 to only 601 lines of code by only adding 41 lines for the Bind-
ing Specification. This means that we could reduce the amount of View Data Binding
related code by around 20 percent1 with the help of BindingJS. Since around 200 lines
of the view’s code are made up of code handling mobiscroll, a plug-in that provides
scrolling dials, the actual percentage of reduction could even be seen as around 25
percent2. Also, it is worth noting that the old implementation did not consider surgical
updates that are provided by BindingJS without additional effort.

1 601+41
802

≈ 80, 1%

2 601−200+41
802−200

≈ 73, 4%

142

8. Conclusion and Future Work

Web applications today are complex and need powerful tools that abstract away repeti-
tive tasks like ViewData Binding. To approach the topic of our work we first made clear
what the problem domain is in the chapters 1 and 2. The task of View Data Binding
typically appears in Rich Web Clients that mainly use one of the architectural patterns
Model-View-Controller or Model-View-ViewModel. We introduced these patterns and
showed how inefficient and lengthy typical use cases are solved without using a View
Data Binding library. Thus, we made clear why such solutions are required urgently
and what their characteristics should be. They should simplify and reduce the amount
of code that has to be written. In addition, the library should be as flexible as possible
and offer a reactive user experience. Since View Data Binding is an important concept
on its own, mixing it into the view or model component seemed inappropriate and like
inadequate design to us. Therefore, we state that another requirement should be that
it should be possible to define View Data Binding separately to follow the principle of
Separation of Concerns.

In chapter 3 we examined existing solutions targeting the problem of View Data
Binding. We illustrated their advantages and disadvantages, and to be able to com-
pare them we evaluated them against a criteria catalog. During this examination, we
gained vital experience helping us in defining the features that a library should offer.
In conclusion, we found that no solution currently available offers the characteristics
we strive for. Although they reduce the amount of code, they mostly lack the flexibil-
ity to adapt to arbitrary Presentation Model implementations. In addition, there is no
library that allows to define the View Data Binding separately.

To make a relevant contribution to the field we clearly defined the concepts that are
necessary to realize View Data Binding. We took care that these concepts are indepen-
dent of an implementation, clearly state their necessity and that they are minimal. As
a result, we found that there are just three essential concepts for realizing View Data
Binding, while one additional concept is necessary to satisfy the needs of structuring
an application. To realize the features that most other solutions offer and to increase
the usability of these concepts, we added further non-essential concepts. However,
we could show that these syntactical features can all be reduced to essential concepts
and do not increase the expressiveness of the solution.

For each such concept we defined its syntax with a domain specific language for
View Data Binding that is optimized for readability, compactness and maintainability.
By defining their semantics we could already take care that any implementation of
these concepts is model-agnostic. In addition, we discovered the importance of a third
Data Target, the Binding Scope which is needed to realize View Data Binding apart
from the Presentation Model and DOM Fragment.

143

8. Conclusion and Future Work

1 (value | css:color <- colorify)
2 <- $name
3
4 value ->
5 ($name | abbrev -> $initials)

Listing 8.1: Parallel Binding

1 value <- $name
2 css:color <- colorify <- $name
3
4 value -> $name
5 value -> abbrev -> $initials

Listing 8.2: Transformation

One concept that could be added tomake our syntax evenmore compact in the future
is shown in listing 8.1. It allows to combine two or more Bindings into one statement
by using a new parallel operator. Obviously, this concept is not essential and an idea
about how it can be transformed is shown in listing 8.2.
In chapter 6 we presented BindingJS as a proof that our concepts can be imple-

mented. The JavaScript library provides an extensible and feature-rich API. Adapter
and Connectors can be easily plugged in to adapt the solution to almost any environ-
ment. The challenge was finding preprocessing steps that transform the input com-
ponents simplifying the remainder of the implementation. By using multiple trees we
presented an efficient way to implement the concept of Iteration. We were attentive
that changes to the DOM Fragment are surgical, meaning that the number of modifi-
cations is minimized when the iterated collection changes. To provide a reactive user
experience we designed the propagation of Bindings to be asynchronous. By following
the observer pattern all modifications are visible immediately.
In the future we plan on adding more Adapter and Connectors to fit more and more

use cases out of the box. Most importantly, the implementation of Convenience Con-
cepts which will be the most crucial improvement of BindingJS’ usability still remains
open. Apart from offering to specify a Binding Specification separately or imperatively,
we want to allow defining it declaratively, as well. Listing 8.3 shows an example of a
Template DOM Fragment that comprises View Data Binding information in attributes
of its HTML elements.

1 <div id="template">
2 <input type="text" data-bind="value <-> $name">
3 <div data-iterate="@name: $names">
4 <div data-bind="img { attr:src <- getAvatar <- @name }"
5
6 </div>
7 </div>
8 </div>

Listing 8.3: Declarative View Data Binding

We can include this feature without much effort by splitting up the declarative code
into a Template DOM Fragment and a Binding Specification. This way, we can reuse
apart from some early preprocessing steps all of BindingJS’ code. Besides declarative
View Data Binding, we consider dynamic template an interesting opportunity to im-
prove BindingJS. At the moment, the Template DOM Fragment is a static input that
cannot be changed after the ViewData Binding is set up. Allowing this, however, would
enable use cases where a user interface is exchanged seamlessly.
Further, we see possibilities to simplify the development process of a Binding Speci-

144

fication. For example, some Bindings could be set up automatically if a helpful default
behavior is found. For instance, if the id attribute of an HTML tag equals the name of
field from the PresentationModel, these two could be bound automatically. To abstract
away from our domain specific language, we think, there might even be a graphical
user interface for defining a Binding Specification. By showing all available items from
the Presentation Model and the Template DOM Fragment, as well as all available Con-
nectors, a Binding could be created with drag and drop.
In chapter 7 we evaluated how BindingJS can compete with the libraries that already

exist and how it can be used in real world applications. We found that BindingJS is
a promising alternative and has a high potential of becoming a popular View Data
Binding library. Sure, this requires effort from our side in promoting our solution to
a broader audience by offering support, improvements and sharing information about
the solution in communities. When including BindingJS in TodoMVC and an internal
application at msg systems AG, we could see the potential of the framework which lead
to dramatic reduction of code that is still maintainable, flexible and well readable. In
conclusion, we reached all of our goals and provided a holistic, separable, reactive
and model-agnostic library with a solid conceptual foundation.

145

A. Appendix

A.1. Comparison of Rich Web Client Libraries
A.1.1. Criteria Catalog
This catalog explains the criteria that were used for comparing different view data
binding frameworks in section A.1.2. It also describes how these criteria are scored.

Design

Amount of Logic in View Does the framework restrict the amount of logic in the view
to the typical needs of a view component (e.g. iterations, conditions, etc.)?
-1 No (Use of JavaScript)
0 Partially (No logic at all)

+1 Yes

Binding Separable from View Is it possible to define the binding separately?
-1 No
0 Partially or unknown

+1 Yes

Efficiency by employing Surgical Updates Does the framework apply an algorithm to
minimize the number of changes to the DOMwhen updating collections or nested
structures?
-1 No
0 Partially or unknown

+1 Yes

Intermediate Representation Does the framework make use of one or more layers of
abstraction between the view and data model or are update operations directly
performed on the DOM?
-1 No
0 Partially or unknown

+1 Yes

Paradigm for Binding Does the framework offer both the imperative and declarative
paradigm to define bindings?
-1 No (Imperative or declarative definitions only)
0 Partially or unknown

147

A. Appendix

+1 Yes

Limitation of Scope to Data Binding Is the binding aspect the main purpose of the
framework?
-1 No (Covers wide areas of web development)
0 Partially (Focuses primarily on binding, but also offers minor additional fea-
tures)

+1 Yes (Provides functionality for binding only)

Template Sources Does the framework offer many or only few possibilities to include
the template? (Possibilities include passing a string, referencing an existing DOM
fragment or referencing an external file)
-1 Few (Exactly one)
0 Between

+1 Many (More than two)

Compatibility

Adaptability to Hierarchical Model Is it possible to adapt the solution to a hierarchical
model like the one used in ComponentJS?
-1 No (The lookup mechanism cannot easily be changed to performmethod calls
instead of an attribute access for lookups)

0 Maybe (The lookup mechanism can be changed easily)
+1 Yes (The framework already provides the required flexibility)

Browser Support Does the framework support an adequate set of different web
browsers?
-1 No (Only most recent versions of Chrome or Firefox)
0 Partially (Most recent versions of Chrome, Firefox and Internet Explorer)

+1 Yes (All relevant versions of Chrome, Firefox and Internet Explorer)

Compatibility with jQuery Does the framework easily work together with jQuery?
-1 No (Cannot be used with jQuery)
0 Maybe or unknown

+1 Yes (Is compatible with jQuery or depends on jQuery)

Extensibility Does the framework provide an easy way to add custom plug-ins?
-1 No (Not possible)
0 Partially (Possible, but difficult)

+1 Yes (Well documented with examples)

Observation Mechanisms Is the framework flexible regarding different presentation
model implementations?
-1 No (Lacks adapter concept or unreliable access through adapter)
0 Partially (Exclusive access through adapter, adding new adapters is difficult)

+1 Yes (Exclusive access through adapter, new adapters can be added easily)

148

A.1. Comparison of Rich Web Client Libraries

Feature Coverage

Animations Is it possible to animate value changes?
-1 No
0 Possible, but not integrated

+1 Yes

Binding to DOM Events Does the solution allow binding to DOM events?
-1 No
0 Possible by providing a callback function

+1 DOM events can be stored in the model, but only common DOM events
+2 Arbitrary DOM events may be stored in the model

Chains Does the framework allow chaining features like doing validation first, then a
conversion and last an animation?
-1 No
0 Possible, but not integrated

+1 Yes

Converter Is it possible to convert bound values using custom converters?
-1 No
0 Maybe or Unknown

+1 Yes

Expressions Can bound values be modified using expressions? How rich is the set of
available expressions?
-1 No
0 Partially (Using simple arithmetic or comparison operators)

+1 Yes with restrictions (Offering a complex set of possibilities like method calls
or index access)

+2 Yes (Offering a complex set of possibilities including regular expressions)

Filters Is it possible to filter collections?
-1 No
0 Possible, but not integrated

+1 Yes

Subscription to Events Triggered Internally Is it possible to subscribe to events that
are triggered when a bound value will change or has changed?
-1 No
0 Unknown

+1 Yes

149

A. Appendix

Two-way binding Apart from binding values in one direction, does the solution offer
two directional binding when appropriate?
-1 No
0 Unknown

+1 Yes

Validation Is there a validation mechanism included and how rich is it?
-1 No
0 Possible, but not integrated

+1 Yes with restrictions (Only for simple validation like range, length, character
set checks)

+2 Yes (Including complex validation like email address, zip code checks)

Usability

Changes necessary to Existing Solution Is it possible to use the framework in an ex-
isting solution without rewriting most of the code?
-1 No
0 Partially (Moderate amount of code)

+1 Yes

Efficiency in Big Applications Does the solution perform well in a big web application?
-1 No (Only suitable for small projects)
0 Maybe (Theoretically performs well in big projects)

+1 Yes

Learning Curve Can an average software engineer understand and apply the frame-
work after a short amount of time?
-1 No
0 Maybe

+1 Yes

Number of Dependencies Does the solution waive the need for dependencies that have
to be included manually?
-1 No (More than two)
0 Partially (One or two)

+1 Yes (None)

Size of the Framework Does the minified version of the framework not require a lot of
space?
-1 No (More than 200kB)
0 Between

+1 Yes (Less than 50kB)

150

A.1. Comparison of Rich Web Client Libraries

Intuitivity and Maintainability of the Syntax Is a software engineer unfamiliar with
the framework able to understand the intention of the binding code easily and
will he or she therefore be able to maintain said code effortlessly?

-1 No (Difficult to read and understand)

0 Partially (Readable and understandable after a short time of research)

+1 Yes

Support

Number of Answered Questions on StackOverflow.com Are theremany questions about
the framework that have been marked as answered on StackOverflow.com?

-1 No (Less than 25)

0 Between

+1 Yes (More than 100)

Number of Contributors on GitHub Have many different people worked on the frame-
work?

-1 No (Less than 3)

0 Between

+1 Yes (More than 10)

Number of Stars on GitHub Did many people show interest by adding their star to the
solution?

-1 No (Less than 50)

0 Between

+1 Yes (More than 300)

Google Query about Typical Question Does a typical query about the framework on
Google return the official documentation?

-1 No

0 Partially (Not within top three results)

+1 Yes

Quality of Documentation Do the authors of the framework maintain a helpful docu-
mentation?

-1 No

0 Partially (Outdated or too shallow)

+1 Yes

151

A. Appendix

Reliability

Architectural Cleanliness Is the architecture employed by the framework well defined
and beneficial?
-1 No
0 Partially

+1 Yes

Implementation Cleanliness Is code inside the framework easy to understand?
-1 No
0 Partially

+1 Yes

Maturity Was the first version of the framework released long enough ago to be con-
sidered mature?
-1 No (Less than six months ago)
0 Between

+1 Yes (More than one year ago)

Development Activity Do people work regularly on the solution?
-1 No (Less than five commits on average per week during the last six months)
0 Between

+1 Yes (More than ten commits on average per week during the last six months)

Test Coverage Is the framework tested well?
-1 No
0 Partially (Unsteady execution or low coverage)

+1 Yes

Version Do the developers feel confident about the quality of their product?
-1 No (Alpha or Beta version)
0 Between

+1 Yes (First major version or above)

152

A.1.
C
om

parison
ofR

ich
W
eb

C
lientLibraries

A.1.2. Evaluation
The criteria and their scoring used for this comparison of view data binding frameworks is explained in detail in
section A.1.1. In general a positive score denotes a good, a negative score a bad and a neutral score a neither good
nor bad result. The number below the names of the frameworks in the second line of each table represents the
version of the framework, which was tested.

Design

Table A.1.: Comparison of View Data Binding Frameworks — Design
Ractive.js RivetJS Ripple Vue FB React MontageJS Reactive KnockoutJS
0.4.0 0.6.7 0.3.5 0.10.4 0.10.0 0.14.2 1.1.0 3.1.0

Logic in View +1 +1 -1 -1 -1 0 +1 -1

Binding Sepa-
rable -1 -1 -1 -1 -1 0 -1 -1

Surgical Up-
dates +1 -1 0 +1 +1 0 -1 +1

Intermediate
Representa-
tion

0 -1 -1 -1 +1 0 -1 0

Paradigm -1 -1 -1 -1 -1 -1 -1 -1

Limitation of
Scope 0 +1 +1 +1 0 -1 +1 -1

Template
Sources 0 -1 0 0 +1 -1 0 +1

Total Score 0 -3 -3 -2 0 -3 -2 -2153

A.
Appendix

Compatibility

Table A.2.: Comparison of View Data Binding Frameworks — Compatibility
Ractive.js RivetJS Ripple Vue FB React MontageJS Reactive KnockoutJS
0.4.0 0.6.7 0.3.5 0.10.4 0.10.0 0.14.2 1.1.0 3.1.0

Hierarchical
Model -1 +1 -1 -1 -1 -1 0 -1

Browser +1 0 0 0 0 0 0 +1

jQuery +1 +1 +1 +1 +1 0 +1 +1

Extensibility 0 +1 +1 0 -1 0 0 +1

Observation
Mechanism -1 +1 -1 -1 -1 -1 +1 -1

Total Score 0 +4 0 -1 -2 -2 +2 +1

154

A.1.
C
om

parison
ofR

ich
W
eb

C
lientLibraries

Features

Table A.3.: Comparison of View Data Binding Frameworks — Features
Ractive.js RivetJS Ripple Vue FB React MontageJS Reactive KnockoutJS
0.4.0 0.6.7 0.3.5 0.10.4 0.10.0 0.14.2 1.1.0 3.1.0

Animations +1 -1 -1 +1 0 -1 -1 +1

DOM Event
Binding 0 0 0 0 0 0 0 0

Chains 0 -1 +1 +1 0 +1 -1 0

Converter +1 +1 +1 +1 0 +1 0 +1

Expressions +1 -1 +1 0 +1 +1 0 +1

Filters +1 -1 0 0 0 +1 -1 +1

Subscription
to Internal
Events

+1 0 +1 0 +1 +1 0 +1

Two-way Bind-
ing +1 +1 +1 +1 0 +1 -1 +1

Validation 0 -1 0 0 +1 +1 -1 +1

Total Score +6 -3 +4 +4 +3 +6 -5 +7

155

A.
Appendix

Usability

Table A.4.: Comparison of View Data Binding Frameworks — Usability
Ractive.js RivetJS Ripple Vue FB React MontageJS Reactive KnockoutJS
0.4.0 0.6.7 0.3.5 0.10.4 0.10.0 0.14.2 1.1.0 3.1.0

Existing Solu-
tion 0 0 -1 0 -1 -1 +1 0

Big Applica-
tions +1 0 0 0 +1 0 -1 +1

Learning
Curve +1 +1 +1 +1 0 -1 +1 0

Dependencies +1 +1 +1 +1 +1 +1 +1 +1

Size 0 +1 +1 +1 0 0 0 +1

Syntax +1 +1 +1 0 -1 -1 +1 0

Total Score +4 +4 +3 +3 0 -2 +3 +3

156

A.1.
C
om

parison
ofR

ich
W
eb

C
lientLibraries

Support

Table A.5.: Comparison of View Data Binding Frameworks — Support
Ractive.js RivetJS Ripple Vue FB React MontageJS Reactive KnockoutJS
0.4.0 0.6.7 0.3.5 0.10.4 0.10.0 0.14.2 1.1.0 3.1.0

Stackoverflow 0 0 -1 -1 +1 -1 -1 +1

Contributors
GitHub +1 +1 0 0 +1 +1 +1 +1

Stars GitHub +1 +1 +1 +1 +1 +1 0 +1

Google 0 -1 +1 +1 0 +1 -1 +1

Documentation 0 -1 +1 0 +1 -1 -1 +1

Total Score +2 0 +2 +1 +4 +1 -2 +5

157

A.
Appendix

Reliability

Table A.6.: Comparison of View Data Binding Frameworks — Reliability
Ractive.js RivetJS Ripple Vue FB React MontageJS Reactive KnockoutJS
0.4.0 0.6.7 0.3.5 0.10.4 0.10.0 0.14.2 1.1.0 3.1.0

Architecture -1 0 0 0 +1 -1 0 +1

Implementation -1 +1 +1 0 +1 -1 0 +1

Maturity 0 +1 -1 -1 0 +1 +1 +1

Development
Activity +1 -1 0 +1 +1 0 -1 -1

Test Coverage 0 0 +1 +1 +1 0 0 +1

Version -1 -1 -1 -1 -1 -1 +1 +1

Total Score -2 0 0 0 +3 -2 +1 +4

158

A.1.
C
om

parison
ofR

ich
W
eb

C
lientLibraries

Accumulated Scores

Table A.7.: Comparison of View Data Binding Frameworks — Accumulated Scores
Ractive.js RivetJS Ripple Vue FB React MontageJS Reactive KnockoutJS
0.4.0 0.6.7 0.3.5 0.10.4 0.10.0 0.14.2 1.1.0 3.1.0

Design 0 -3 -3 -2 0 -3 -2 -2

Compatibility 0 +4 0 -1 -2 -2 +2 +1

Features +6 -3 +4 +4 +3 +6 -5 +7

Usability +4 +4 +3 +3 0 -2 +3 +3

Support +2 0 +2 +1 +4 +1 -2 +5

Reliability -2 0 0 0 +3 -2 +1 +4

Accumulated
Score

+10 +2 +6 +5 +8 -2 -3 +18

159

A. Appendix

A.1.3. List of Libraries
This list contains most frameworks for view data binding written in JavaScript in al-
phabetic order. The solutions either target the problem exclusively or offer view data
binding as a part of their broader functionality.

AngularJS
https://angularjs.org/

Backbone Bindem
http://dundalek.com/bindem/

Backbone Epoxy
http://epoxyjs.org/

BaconJS
https://github.com/baconjs/bacon.js

Batman Bindings
http://batmanjs.org/docs/api/batman.view_bindings.html

CanJS
http://canjs.com/

data-bind.lite
https://github.com/jhewlett/data-bind.lite

Derby
http://derbyjs.com/

dust.js
http://akdubya.github.io/dustjs/

Ember
http://emberjs.com/

ExtJS
http://www.sencha.com/products/extjs/

Facebook React
http://facebook.github.io/react/

Generic Data Binder
http://gdb.thewebdev.guru/

jQuery jBinder
https://github.com/Steve166/jBinder

jQuery.my
https://github.com/ermouth/jQuery.my

jQXB Expression Binder
http://jqxb.codeplex.com/

160

https://angularjs.org/
http://dundalek.com/bindem/
http://epoxyjs.org/
https://github.com/baconjs/bacon.js
http://batmanjs.org/docs/api/batman.view_bindings.html
http://canjs.com/
https://github.com/jhewlett/data-bind.lite
http://derbyjs.com/
http://akdubya.github.io/dustjs/
http://emberjs.com/
http://www.sencha.com/products/extjs/
http://facebook.github.io/react/
http://gdb.thewebdev.guru/
https://github.com/Steve166/jBinder
https://github.com/ermouth/jQuery.my
http://jqxb.codeplex.com/

A.1. Comparison of Rich Web Client Libraries

jsViews
https://github.com/BorisMoore/jsviews

KnockoutJS
http://knockoutjs.com/

Lava JS
http://lava.codeplex.com/

Meteor
https://www.meteor.com/

MontageJS / FRB
https://github.com/montagejs/frb

Ractive.js
http://www.ractivejs.org/

Reactive
https://github.com/component/reactive

riot.js
https://muut.com/riotjs/

Ripple
https://github.com/ripplejs/ripple

RiverJS
http://besideriver.com/RiverJS/

RivetJS
http://www.rivetsjs.com/

RxJS
http://reactive-extensions.github.io/RxJS/

Serenade
http://serenadejs.org/binding_data.html

Simpli5
https://github.com/jacwright/simpli5

Synapse
http://bruth.github.io/synapse/docs/

Vue
http://vuejs.org

161

https://github.com/BorisMoore/jsviews
http://knockoutjs.com/
http://lava.codeplex.com/
https://www.meteor.com/
https://github.com/montagejs/frb
http://www.ractivejs.org/
https://github.com/component/reactive
https://muut.com/riotjs/
https://github.com/ripplejs/ripple
http://besideriver.com/RiverJS/
http://www.rivetsjs.com/
http://reactive-extensions.github.io/RxJS/
http://serenadejs.org/binding_data.html
https://github.com/jacwright/simpli5
http://bruth.github.io/synapse/docs/
http://vuejs.org

A. Appendix

A.2. Code Listings

1 that.$todoList.innerHTML = show(parameter);
2
3 function show(data) {
4 var i, l;
5 var view = ’’;
6
7 for (i = 0, l = data.length; i < l; i++) {
8 var template = this.defaultTemplate;
9 var completed = ’’;
10 var checked = ’’;
11
12 if (data[i].completed) {
13 completed = ’completed’;
14 checked = ’checked’;
15 }
16
17 template = template.replace(’{{id}}’, data[i].id);
18 template = template.replace(’{{title}}’, data[i].title);
19 template = template.replace(’{{completed}}’, completed);
20 template = template.replace(’{{checked}}’, checked);
21
22 view = view + template;
23 }
24
25 return view;
26 };

Listing A.1: View Rendering Written in JavaScript (TodoMVC, Excerpt)

1 #container {
2 @buttonActive <∼ false
3 input#textbox {
4 @buttonActive <- value.length > 0
5 }
6 button#submit {
7 attr:disabled <- !@buttonActive
8 }
9 }

Listing A.2: Realizing Dependant Elements with the Binding Scope

162

A.2. Code Listings

1 var $ = class {
2 constructor () { this.observer = {}; this.counter = new Counter() }
3
4 notify (model, path) {
5 foreach (observer in this.observer) {
6 if (observer.model == model && observer.path == path) {
7 observer.callback()
8 }
9 }
10 }
11
12 observe (model, path, callback) {
13 var ref = model
14 foreach (string in path.subList(0, path.length - 1)) {
15 ref = ref[string]
16 }
17 var id = this.counter.getNext()
18 this.observer.push({ model: model, path: path, ref: ref,
19 callback: callback, id: id })
20 if (!alreadyObserved(ref, path[path.length - 1]) {
21 var self = this
22 WatchJS.watch(ref, path[path.length - 1],
23 function () { self.notify(model, path) })
24 }
25 return id
26 }
27
28 unobserve (observerId) {
29 var observer = this.observer.findById(observerId)
30 if (noOtherObserver(observer.model, observer.ref)) {
31 WatchJS.unwatch(observer.model, observer.ref)
32 }
33 this.observer.remove(observer)
34 }
35
36 getValue (model, path) {
37 var ref = model
38 foreach (string in path) {
39 ref = ref[string]
40 }
41 return ref
42 }
43
44 getPaths (model, path) {
45 var result = [path]
46 var value = this.getValue(model, path)
47 if (!isPrimitive(value)) {
48 foreach (key in value) {

163

A. Appendix

49 var newPath = path.clone()
50 newPath.push(key)
51 var subPaths = this.getPaths(model, newPath)
52 foreach (subPath in subPaths) {
53 result.push(subPath)
54 }
55 }
56 }
57 return result
58 }
59
60 set (model, path, value) {
61 let ref = model
62 foreach (string in path.subList(0, path.length - 1)) {
63 elem = elem[string]
64 }
65 elem[path[path.length - 1]] = value
66 }
67
68 type () {
69 return "model"
70 }
71 }
72
73 BindingJS.plugin("$", new $())

Listing A.3: Model Adapter for JSON Presentation Model

1 function nestIteratedBindings(ast) {
2 var elementToScopesMap = {}
3 foreach (scope in ast.getAllScopes()) {
4 elementToScopesMap[scope.element].add(scope)
5 }
6
7 foreach (element, scopes in elementToScopeMap) {
8 if (anyOf(scopes).hasIteratedAncestorScope()) {
9 foreach (otherScope in scopes.without(iteratedScope)) {
10 if (!otherScope.isDescendantOf(iteratedScope)) {
11 otherScope.moveInto(iteratedScope)
12 }
13 }
14 }
15 }
16
17 foreach (scope in ast.getEmptyScopes()) {
18 scope.remove()
19 }
20 }

Listing A.4: Step 8: Nesting Bindings of Scopes Affected by Iterations

164

A.2. Code Listings

1 var Value = class {
2 constructor () { this.observer = {}; this.counter = new Counter() }
3 notify (element) {
4 foreach (observer in this.observer) {
5 if (observer.element == element) {
6 observer.callback()
7 }}}
8 observe (element, path, callback) {
9 var id = this.counter.getNext()
10 this.observer.push({ element: element, callback: callback,
11 id: id })
12 if (!alreadyObserved(element)) {
13 var self = this
14 element.on("change", function () { self.notify(element) })
15 }
16 return id
17 }
18 unobserve (observerId) {
19 var observer = this.observer.findById(observerId)
20 if (noOtherObserver(observer.element)) {
21 observer.element.off("change")
22 }
23 this.observer.remove(observer)
24 }
25 getValue (element, path) {
26 return element.val()
27 }
28 getPaths (element, path) {
29 return [path]
30 }
31 set (element, path, value) {
32 let oldValue = element.val()
33 element.val(value)
34 if (value !== oldValue) {
35 element.trigger("change")
36 }}
37 type () {
38 return "view"
39 }
40 }
41 BindingJS.plugin("value", new Value())

Listing A.5: View Adapter Reading and Writing Values of HTML Elements

165

A. Appendix

1 // bindingspecification consists of blocks (alias b) followed by eof
2 // blocks is defined in line 8, eof in line 44
3 bindingspecification =
4 b:blocks eof {
5 // Result of parsing a bindingspecification is result of blocks
6 return b
7 }
8
9 // blocks consist of an arbitrary number of block elements
10 blocks =
11 b:(_ block)* _ {
12 // b comprises a set of matches for each _ and block
13 // result is an AST with root "Blocks" and one child for each block
14 return AST("Blocks").add(getFromEach(b).index(1))
15 }
16
17 block
18 = group
19 / scope
20
21 group =
22 "@binding" ws n:id ws "{" b:blocks "}" {
23 return AST("Group").set("id").to(n.get("id")).add(b)
24 }
25
26 scope =
27 s:selectors _ i:scopeIterator? _ e:scopeExport? _
28 "{" b:(_ scopeBody _ ";"?)* _ "}" {
29 return AST("Scope").add(s, i, e, getFromEach(b).inddex(1)))
30 }
31 /
32 s:selectors _ x:(scopeLabel / scopeIterator /
33 scopeImport / scopeExport) {
34 return AST("Scope").add(s, x)
35 }
36
37 _ "optional blank" = (co / ws)*
38
39 co "end-of-line or multi-line comment"
40 = "//" [^\r\n]*
41 / "/*" (!"*/" .)* "*/"
42
43 ws "any whitespaces" = [\t\r\n]+
44
45 eof "end of file" = !.

Listing A.6: PEG.js Grammar (Excerpt)

166

A.2. Code Listings

1 function checkIterationIds(ast) {
2 checkIterationIdsRec(ast, [])
3 }
4
5 function checkIterationIdsRec(ast, ids) {
6 if (isIteratedScope(ast)) {
7 var entryAdapter = ast.getEntryAdapter()
8 if (!isBindingScopeAdapter(entryAdapter)) {
9 throw exception("You can only use the binding scope " +
10 "adapter as the entryAdapter for an iteration. " +
11 "Instead " + entryAdapter + "was used")
12 }
13 var keyAdapter = ast.getKeyAdapter()
14 if (!isBindingScopeAdapter(keyAdapter)) {
15 // See above
16 }
17
18 if (ids.contains(entryAdapter.getQualifier())) {
19 throw exception("Adapter " + entryAdapter.getText() +
20 " was used as an iteration variable," +
21 " but was also declared in an ancestor scope"
22 }
23 if (ids.contains(keyAdapter.getQualifier())) {
24 // See above
25 }
26 }
27
28 // ids must be passed by value to recursive calls
29 ids = ids.clone()
30 // Add all direct Adapter to ids
31 var allAdapter = ast.getAllAdapter()
32 foreach (adapter in allAdapter) {
33 if (isBindingScopeAdapter(adapter)) {
34 ids.add(adapter.getQualifier())
35 }
36 }
37
38 // Recursion
39 foreach (child in ast.getChildren()) {
40 checkIterationIdsRec(child, ids)
41 }
42 }

Listing A.7: Step 1: Checking Adapter of Iterations

167

A. Appendix

1 function expandSelectors(template, ast) {
2 expandSelectorsRec(template, ast)
3
4 // Remove placeholders (see line 27)
5 ast.removeAll("Placeholder")
6 }}
7
8 function expandSelectorsRec(template, ast) {
9 if (isScope(ast)) {
10 var newScopes = []
11 foreach (selector in ast.selectorList) {
12 // Evaluate Selector
13 var elements = jQuery(selector, template)
14 foreach (element in elements) {
15 // Clone Scope including all child Scopes
16 var newScope = ast.clone()
17 newScope.element = element
18 newScopes.push(newScope)
19 }}
20 ast.removeSelectors()
21
22 if (!newScopes.isEmpty()) {
23 ast.replace(newScopes)
24 } else {
25 // Replace with Placeholder to avoid changing collection
26 // of for loop below
27 ast.replace(new AST("Placeholder"))
28 }
29
30 // Recursion over every newly generated scope
31 foreach (newScope in newScopes) {
32 foreach (child in newScope.children) {
33 // Recursion, changes template to matched element of parent
34 expandSelectorsRec(newScope.element, child)
35 }}
36 } else {
37 // Recursion
38 foreach (child in ast.children) {
39 expandSelectorsRec(template, child)
40 }}}

Listing A.8: Step 3: Expanding Selectors

168

A.2. Code Listings

1 Scope [2/3] // div
2 Binding [3/5]
3 Adapter [3/5]
4 ExprSeq [3/5]
5 Variable (ns: "@", id: "temp") [3/5]
6 Scope [4/5] // span
7 Binding [5/7]
8 Adapter [5/7]
9 ExprSeq [5/7]
10 Variable (ns: "@", id: "entry") [5/7]
11 Scope [8/5] // li
12 Iterator [8/8]
13 Variables [8/8]
14 Variable (ns: "@", id: "entry") [8/9]
15 Variable (ns: "@", id: "temp") [8/17]
16 Expr [8/8]
17 Variable (ns: "$", id: "collection") [8/24]

Listing A.9: Step 1: Counter Example Abstract Syntax Tree Excerpt

1 function shutdown(plItRoot) {
2 foreach (child in plItRoot.getChildren()) {
3 var expItNode = child.links[0]
4 bindingScope.unobserve(expItNode.sourceObserverId)
5 var collection = bindingScope.get(expItNode.sourceId)
6 if (isReference(collection)) {
7 collection = collection.getValue()
8 }
9 collection = collection ? collection : []
10 var newCollection
11 if (isBoolean(collection)) {
12 newCollection = false
13 } else {
14 newCollection = []
15 }
16 bindingScope.set(expItNode.sourceId, newCollection)
17 changeListener(expItNode)
18 }
19 var rootInstance = plItRoot.links[0].instances[0]
20 shutdownBinding(rootInstance)
21 }

Listing A.10: Deactivating the View Data Binding

169

A. Appendix

1 function setupIterationTree(ast, template) {
2 var node = new PlainIteration()
3
4 if (ast.isIteratedScope()) {
5 node.entryId = ast.entryId
6 node.keyId = ast.keyId
7 node.sourceId = ast.sourceId
8 // div (...) { ... } => div { ... }
9 ast.removeIteration()
10
11 var placeholder = createNode("<!-- -->")
12 template.insertAfter(placeholder)
13 template.detach()
14
15 node.iterationTemplate = template
16 node.template = placeholder
17 node.collection = []
18 } else {
19 node.template = template
20 node.iterationTemplate = template
21 node.collection = true
22 }
23
24 node.placeholder = []
25 foreach (scope in ast.getDirectChildIteratedScopes()) {
26 // Recursion, changes template
27 var child = setupIterationTree(scope, scope.element)
28 node.placeholder.push(child.template)
29 node.addChild(child)
30 // This does not affect the childs binding (see line 33)
31 scope.remove()
32 }
33 node.binding = ast.clone()
34 node.links = []
35
36 return node
37 }

Listing A.11: Step 9: Setup Iteration Tree

170

A.2. Code Listings

1 function setupExpandedIterationTree(plainIterationRoot) {
2 var expandedIterationRoot =
3 initExpandedIterationNode(plainIterationRoot, null)
4 var rootInstance = initInstance(expandedIterationRoot)
5
6 expandedIterationRoot.instances = [rootInstance]
7 plainIterationRoot.links = [expandedIterationRoot]
8
9 foreach (plainIterationChild in plainIterationRoot.children) {
10 var expandedIterationChild =
11 initExpandedIterationNode(plainIterationChild,
12 expandedIterationRoot)
13 expandedIterationRoot.add(expandedIterationChild)
14 expandedIterationChild.instance = rootInstance
15 plainIterationChild.links = [expandedIterationChild]
16 }
17
18 return expandedIterationRoot
19 }
20
21 function initExpandedIterationNode(plainIterationNode, parentLink,
22 bindingScopePrefix, counter) {
23 var result = new ExpandedIteration()
24 result.template = plainIterationTemplate.clone()
25 result.instances = []
26 result.sourceId = plainIterationNode.sourceId
27 result.origin = plainIterationNode
28
29 // Adapt references to clone of template
30 result.binding = plainIterationNode.binding.clone()
31 result.placeholder = plainIterationNode.placeholder.clone()
32 result.sockets = plainIterationNode.sockets.clone()
33
34 if (plainIterationNode.isRoot()) {
35 result.placeholderIndex = -1
36 result.collection = true
37 } else {
38 result.placeholderIndex = plainIterationNode.childIndex() :
39 result.collection = []
40 }
41
42 // Renaming
43 var bindingScopeAdapter = result.binding.getAllBindingScopeAdapter()
44
45 // Rename what parent renamed ...
46 foreach (adapter in bindingScopeAdapter) {
47 if (parentLinkHasRenamed(adapter)) {
48 adapter.renameLikeParentLink()

171

A. Appendix

49 }}
50 // ... including own source id
51 if (parentLink.renamed(result.sourceId) {
52 result.sourceId = parentLink.findHowRenamed(result.sourceId)
53 }
54
55 // Find all newly introduced Binding Scope Qualifiers
56 var ownVariables = []
57 foreach (adapter in bindingScopeAdapter) {
58 // Check if Qualifier was used in any ancestor
59 if (noAncestorKnowsAbout(adapter)) {
60 ownVariables.add(adapter)
61 }}
62 // Entry and Key Adapter are always own variables because of step 1
63 if (plainIterationNode.entryId) {
64 ownVariables.add(plainIterationNode.entryId)
65 }
66 if (plainIterationNode.keyId) {
67 ownVariables.add(plainIterationNode.keyId)
68 }
69
70 var ownRenames = []
71 ownRenames.addAll(renameAll(ownVariables, result))
72 ownRenames.addAll(renameEntryAndKey(result))
73 result.bindingRenames = parent.bindingRenames + ownRenames
74
75 return result
76 }

Listing A.12: Step 11: Setup Expanded Iteration Tree

1 function init(expandedIterationTreeRoot) {
2 var iterationInstanceRoot = expandedIterationTreeRoot.instances[0]
3 initBinding(iterationInstanceRoot)
4 foreach (plainIterationTreeChild in
5 expandedIterationTreeRoot.origin.children) {
6 var expandedIterationTreeChild = plainIterationTreeChild.links[0]
7 var observerId =
8 bindingScope.observe(expandedIterationTreeChild, function () {
9 changeListener(expandedIterationTreeChild)
10 })
11 expandedIterationTreeChild.sourceObserverId = observerId
12 }
13 changeListener(expandedIterationTreeChild)
14 }

Listing A.13: Activating the View Data Binding

172

A.2. Code Listings

1 function levenshtein(oldCollection, newCollection) {
2 var newValues = []
3 foreach (item, key in newCollection)
4 newValues[key] = convertToValues(item)
5
6 var result = []
7 if (isArray(oldCollection) && isArray(newCollection)) {
8 // Comparing Arrays
9 // See Levenshtein Distance Implementations
10 var matrix = [];
11 for (var i = 0; i <= newCollection.length; i++)
12 matrix[i] = [i]
13 for (var j = 0; j <= oldCollection.length; j++)
14 matrix[0][j] = j
15
16 for (var i = 1; i <= newCollection.length; i++) {
17 for (var j = 1; j <= oldCollection.length; j++) {
18 if (objectEquals(newValues[i-1], oldCollection[j-1])) {
19 matrix[i][j] = matrix[i-1][j-1]
20 } else {
21 matrix[i][j] = Math.min(matrix[i-1][j-1] + 1, // substitution
22 matrix[i][j-1] + 1, // insertion
23 matrix[i-1][j] + 1) // deletion
24 }}}
25
26 // See stackoverflow.com
27 var x = newCollection.length
28 var y = oldCollection.length
29 var result = [];
30 while (x >= 0 && y >= 0) {
31 var current = matrix[x][y];
32 var diagonal = x - 1 >= 0 && y - 1 >= 0 ?
33 matrix[x - 1][y - 1] :
34 Number.MAX_VALUE
35 var vertical = x - 1 >= 0 ?
36 matrix[x - 1][y] :
37 Number.MAX_VALUE
38 var horizontal = y - 1 >= 0 ?
39 matrix[x][y - 1] :
40 Number.MAX_VALUE
41
42 if (diagonal <= Math.min(horizontal, vertical)) {
43 x = x - 1
44 y = y - 1
45 if (diagonal + 1 == current) {
46 result.add({ action: "replace",
47 key: y,
48 newValue: newCollection[x] })

173

http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance
http://stackoverflow.com/a/10641240

A. Appendix

49 } else {
50 // Nothing has to be done, elements were equal
51 }
52 } else if ((horizontal <= vertical && horizontal == current)
53 || horizontal + 1 == current) {
54 y = y - 1
55 result.add({ action: "remove",
56 key: y })
57 } else {
58 x = x - 1
59 result.add({ action: "add",
60 key: x,
61 value: newCollection[x],
62 afterKey: y - 1 })
63 }
64 }
65 } else {
66 // Comparing Objects
67 foreach (key in oldCollection) {
68 if (!newCollection.contains(key)) {
69 result.add({ action: "remove", key: key })
70 } else if (!objectEquals(oldCollection[key], newCollection[key])){
71 result.add({ action: "replace", key: key,
72 newValue: newCollection[key] })
73 }
74 }
75 var last
76 foreach (key in newCollection) {
77 result.add({ action: "add", key: key,
78 value: newCollection[key], afterKey: last })
79 last = key
80 }
81 }
82 return result
83 }

Listing A.14: Levenshtein Algorithm to Determine Minimum Number of Changes

174

A.2. Code Listings

1 function add(expItNode, key, value, afterKey) {
2 var newInstance = addInstance(expItNode, key, value, afterKey)
3 foreach (child in expItNode.origin.getChildren()) {
4 var newChild = initChild(expItNode, child, newInstance, key)
5 expItNode.add(newChild)
6 }
7 initBinding(newInstance)
8 refreshKeysAdded(expItNode, newInstance, afterKey)
9 }
10
11 function addInstance(expItNode, key, value, afterKey) {
12 var newTemplate = expItNode.template.clone()
13 // Adapt references to clone of template
14 var newPlaceholders = expItNode.placeholder.clone()
15 var newSockets = expItNode.sockets.clone()
16 var newBinding = expItNode.binding.clone()
17
18 // Renaming
19 var bindingRenames = []
20 bindingRenames.addAll(
21 renameAllOwnVariables(expItNode.ownVariables, counter)
22)
23 var entryIdRename = renameEntryId(expItNode.entryId, counter)
24 var newEntryId = entryIdRename.newId
25
26 var keyIdRename = renameKeyId(expItNode.keyId, counter)
27 var newKeyId = keyIdRename.newId
28
29 bindingRenames.addAll(entryIdRename, keyIdRename)
30 bindingRenames.addAllIfExists(expItNode.instance.bindingRenames)
31 doRename(newBinding, bindingRenames)
32
33 // Inject entry and key
34 if (entryIdRename) {
35 bindingScope.set(entryIdRename.newId, value)
36 }
37 if (keyIdRename) {
38 bindingScope.set(keyIdRename.newId, key)
39 }
40
41 // Insert template
42 if (afterKey && expItNode.instances.length > 0) {
43 var afterInstance = findInstanceByKey(expItNode.instances, afterKey)
44 afterInstance.template.after(newTemplate)
45 } else {
46 expItNode.instance.placeholder[expItNode.placeholderIndex]
47 .after(newTemplate)
48 }

175

A. Appendix

49
50 var newInstance = {
51 entryId: newEntryId,
52 keyId: newKeyId,
53 key: key,
54 template: newTemplate,
55 binding: newBinding,
56 placeholder: newPlaceholders,
57 sockets: newSockets,
58 bindingRenames: bindingRenames
59 }
60 expItNode.instances.add(newInstance)
61
62 // Call socket observer
63 callSocketInsertionObserverInstance(expItNode, newInstance)
64
65 return newInstance
66 }
67
68 function initChild(expItNode, plItNode, instance, key) {
69 var result = initExpandedIterationNode(plItNode, expItNode, ...)
70 plItNode.links.add(result)
71 result.instance = instance
72 if (instance.bindingRenames.renamed(result.sourceId)) {
73 result.sourceId = instance.bindingRenames.get(result.sourceId)
74 }
75
76 var sourceObserverId =
77 bindingScope.observe(result.sourceId, function () {
78 changeListener(result)
79 })
80 changeListener(result)
81 result.sourceObserverId = sourceObserverId
82 result.key = key
83
84 return result
85 }

Listing A.15: Adding Iteration Instances

176

A.2. Code Listings

1 function remove(expItNode, key) {
2 var instance = findByKey(expItNode.instances, key)
3 shutdownBinding(instance)
4
5 foreach (child in expItNode.getChildren()) {
6 if (child.instance == instance) {
7 expItNode.remove(child)
8 destroyChild(child)
9 }
10 }
11
12 removeInstance(expItNode, key, instance)
13 refreshKeysRemoved(expItNode, key)
14 }
15
16 function destroyChild(expItNode) {
17 bindingScope.unobserve(expItNode.sourceObserverId)
18 var collection = bindingScope.get(expItNode.sourceId)
19 if (isReference(collection)) {
20 collection = collection.getValue()
21 }
22 collection = collection ? collection : []
23
24 var newCollection
25 if (isBoolean(collection)) {
26 newCollection = false
27 } else {
28 newCollection = []
29 }
30 bindingScope.set(expItNode.sourceId, newCollection)
31 changeListener(expItNode)
32
33 expItNode.origin.links.remove(expItNode)
34 }
35
36 function removeInstance(expItNode, key, instance) {
37 callSocketRemovalObserverInstance(expItNode, instance)
38 expItNode.instances.remove(instance)
39 instance.template.detach()
40
41 if (instance.entryId) {
42 bindingScope.destroy(instance.entryId)
43 }
44 if (instance.keyId) {
45 bindingScope.destroy(instance.keyId)
46 }}

Listing A.16: Removing Iteration Instances

177

A. Appendix

A.3. Figures

Figure A.1.: WPF Application Demonstrating Data Binding

178

A.3. Figures

Figure A.2.: Selenium IDE Test Case Execution

179

B. Glossary
Adobe Flash Propietary software platform for programming and displaying interactive

multimedia content. 1

AJAX Concept that describes how data is asynchronously transferred between a web
browser and a server. It therefore allows to populate a web page with data from
the server without reloading it. 23, 24, 181

AngularJS Open source JavaScript framework for creating browser-based single page
applications following the Model-View-ViewModel pattern (see section 2.1.2). 1

API See Application Programming Interface. 8, 21, 32, 87, 88, 92–94, 97–99, 101, 102,
105, 115, 130, 131, 144

Application Programming Interface Specifies the possible ways of interacting with a
software component. 181

Backbone.js Open source JavaScript library for creating browser based single page
applications following the Model-View-Controller pattern (see section 2.1.1). 1

Big Ball of Mud Software without recognizable architecture. 36

Cascading Style Sheets Declarative language to define the appearance of web page
elements (see [Lie94]). 181

Chrome Widely used web browser, that focuses on performance, reliability and secu-
rity. 148, 181

Chrome OS Linux based operating system (OS) that makes minimal use of local re-
sources and is primarily designed to run the web browser Chrome. 2

ComponentJS JavaScript library for hierarchically structuring the architecture of web
applications. 2, 10, 11, 14, 19, 64, 148

CSS See Cascading Style Sheets. 1, 41, 58, 60, 102, 139

Dart Web programming language that aims to provide an alternative to and in the
future replace JavaScript1. 1

Document Object Model Specification of an interface for accessing or manipulating
HTML or XML documents. 182

dojo Open source library for writing JavaScript/AJAX based applications and web
sites including support for language localizations and reusable user interface
elements. 1, 2

1https://www.dartlang.org/

181

https://www.dartlang.org/

Glossary

DOM See Document Object Model. 27, 28, 30, 32, 88, 90, 133, 147–149, 155, 183

double mustache notation Type of notation that distinguishes elements that are em-
bedded into a host language by enclosing them in two curly brackets, like {{ex-
pression}}. The term is used, since curly brackets rotated by 90 degrees resem-
ble a mustache. 14, 29, 32

Extensible Application Markup Language Language for describing the structure and
appearance of user interfaces or workflows developed by Microsoft. 184

Extensible Markup Language Language for specifying hierarchically structured data.
184

facebook Internet application, regularly referred to as a social network that allows
sharing and consuming information with and from other people2. 1, 27

Firefox Widely used open source web browser that offers a rich set of privacy and
security measures. 148

GitHub Web-based service for hosting software projects and making their develop-
ment visible to collaborators and interested people named after the revision con-
trol system Git. 91, 135, 151, 157

Google Docs Internet application for collaboratively creating and manipulating docu-
ments3. 1

Google Hangouts Internet application for holding online meetings including text-,
video- and file-based communication4. 1

Google Maps Internet application for browsing the world map including satellite im-
agery, photos from street level, and navigation5. 1

Graphical User Interface Type of interface that in contrast to text based command line
interfaces adds graphical elements that enable a user to interact with the appli-
cation. 182, 183

GUI See Graphical User Interface. 2, 8

gzip Free application for compressing files that is available for virtually any operating
system. 32

HTML See Hypertext Markup Language. 2, 8, 11, 19, 24, 30, 31, 36, 39, 44, 56, 60,
76, 87, 95, 101, 102, 142, 144, 145, 165, 181–183

HTML 5 Fifth revision of the HTML standard mainly adding multimedia functionality.
1, 8, 131

Hyperlink Usually a clickable reference to another web page inside a web page. 6
2http://www.facebook.com/
3http://docs.google.com/
4http://hangouts.google.com/
5http://maps.google.com/

182

http://www.facebook.com/
http://docs.google.com/
http://hangouts.google.com/
http://maps.google.com/

Glossary

Hypertext Markup Language Standard language to create web pages6. 182

i18n Numeronym (abbreviation) for Internationalization which is the task in software
engineering making an application available in different languages. 47

IDE See Integrated Development Environment. 21

Integrated Development Environment Software that aids in developing software usu-
ally comprising a source code editor, build automation and support for debugging.
183

Internet Explorer Web browser for Windows operating systems. 148

Java Object oriented, imperative programming language that is, due to its execution
in a virtual environment, platform independent. 21, 24, 183

Java EE Enterprise edition (EE) of Java specifying the architecture for a transaction
based middleware solution that is primarily used in web applications. 6

JavaScript Web programming and scripting language that is executed mainly in web
browsers to enrich web pages. 1, 6, 8, 11–13, 27, 29, 30, 32, 42, 52, 54, 87, 88,
90, 92, 105, 106, 131, 133, 137, 142, 144, 147, 160, 162, 181, 183, 184

JavaScript Object Notation Compact data format to transfer data between or inside
applications that is defined with JavaScript, but is principally language indepen-
dent with parsers in all dominant languages. 183

jQuery A client-side JavaScript library simplifying the manipulation of and interaction
with HTML. 1, 88, 90, 92, 95, 102, 131, 134, 148, 154, 183

jQuery Markup jQuery plugin for populating and injecting templates into the DOM.
14, 16

jQuery UI Extension to jQuery that comprises solutions for designing and defining the
functionality of Graphical User Interfaces. 2

JSON See JavaScript Object Notation. 7, 11, 39, 44–46, 48, 50, 87, 92, 101, 104, 126,
127, 129, 164

kB See kilobyte. 32, 33, 134, 150

kilobyte Unit for measuring amounts of data. For example to store 256 or 512 char-
acters depending on the encoding, one kilobyte is required. 183

lint Tool that performs static analysis of source code to give developers hints about
potentially error-prone passages. 90

Microsoft Developer Network Collection of software and documentation for Microsoft
products and technology. 184

6http://www.w3.org/community/webed/wiki/HTML/Specifications

183

http://www.w3.org/community/webed/wiki/HTML/Specifications

Glossary

Microsoft Excel Spreadsheet application that is part of Microsoft Office featuring cal-
culations, graphing tools, pivot tables and macro programming. 16

Microsoft Silverlight Extension for web browsers that allows the execution of rich in-
ternet applications. 1

minification The process of converting source code to make it as small as possible
without changing its semantics. This is useful for interpreted languages, like
JavaScript, where the source code has to be transfered over a network. 32, 90

Model-View-Presenter Design pattern that emerged from the Model-View-Controller
pattern (see section 2.1.1) that aims to decouple model from view by connecting
them with a presenter. 184

MSDN See Microsoft Developer Network. 24

msg systems AG German IT service provider based in Ismaning near Munich whose
offer covers consulting, application development, and system integration. 11, 14,
142, 145

MVP See Model-View-Presenter. 6

Parsing Expression Grammar Formal grammar similar to context-free grammars. Its
main difference is that it cannot produce an ambigious parse tree. 39, 77, 80,
106

StackOverflow.com Open internet platform that allows people to exchange experience
with software development. 135, 151

Unified Modeling Language Graphical language to specify, construct and document
software and system components7. 36, 92

Unix Timestamp Method for storing time information by saving the number of seconds
or milliseconds elapsed since midnight, 1 January 1970. For example, 11:01:21
am, 27 June 2014 would be stored as 1403859681 seconds. 26

XAML See Extensible Application Markup Language. 24

XML See Extensible Markup Language. 24, 181

YouTube Open online video platform for sharing and consuming multimedia record-
ings8. 1

7http://www.uml.org/
8http://www.youtube.com/

184

http://www.uml.org/
http://www.youtube.com/

C. Bibliography
[Bai] Derick Bailey. Backbone.js Is Not An MVC Framework.

URL: http://lostechies.com/derickbailey/2011/12/23/backbone-
js-is-not-an-mvc-framework/ (visited on 06/06/2014).

[Bew] Chris Bewick. HTML5 Custom Data Attributes (data-*).
URL: http://html5doctor.com/html5-custom-data-attributes/ (vis-
ited on 06/10/2014).

[Bro+03] Kyle Brown et al. Enterprise Java Programming with IBM WebSphere.
2nd ed. IBM Press, 2003.

[Cor] Robert Corvus. Separation of Concerns Principle.
URL: http://robertcorvus.com/separation-of-concerns-principle/
(visited on 06/13/2014).

[Cou87] Joëlle Coutaz. „PAC: an Implementation Model for Dialog Design“. In:
Proceedings of the Interact’87 conference. 1987, pp. 431–436.

[Enga] Ralf S. Engelschall. 7-Layer Application Partitioning Architecture.
URL: http : / / engelschall . com / go / EnTR - 01 : 2014 . 01 (visited on
06/06/2014).

[Engb] Ralf S. Engelschall. ComponentJS Architecture.
URL: http://componentjs.com/architecture.html (visited on 06/10/2014).

[Engc] Ralf S. Engelschall. User Interface Component Architecture.
URL: http://componentjs.com/architecture/ui-component-architecture.
pdf (visited on 06/10/2014).

[Engd] Ralf S. Engelschall. User Interface Composition.
URL: http : / / engelschall . com / go / EnTR - 03 : 2013 . 12 (visited on
06/11/2014).

[For04] Bryan Ford. „Parsing expression grammars: a recognition-based syntactic
foundation“. In: 2004.
URL: http://pdos.csail.mit.edu/~baford/packrat/popl04/.

[Fow] Martin Fowler. Presentation Model.
URL: http://martinfowler.com/eaaDev/PresentationModel.html (vis-
ited on 06/10/2014).

[FR10] Martin Fowler and David Rice. Patterns of enterprise application archi-
tecture. 16th ed. The Addison-Wesley signature series. Boston and Mass.
[u.a.]: Addison-Wesley, 2010.

[Gam+95] Erich Gamma et al. Design Patterns. Reading, MA: Addison Wesley, 1995.

185

http://lostechies.com/derickbailey/2011/12/23/backbone-js-is-not-an-mvc-framework/
http://lostechies.com/derickbailey/2011/12/23/backbone-js-is-not-an-mvc-framework/
http://html5doctor.com/html5-custom-data-attributes/
http://robertcorvus.com/separation-of-concerns-principle/
http://engelschall.com/go/EnTR-01:2014.01
http://componentjs.com/architecture.html
http://componentjs.com/architecture/ui-component-architecture.pdf
http://componentjs.com/architecture/ui-component-architecture.pdf
http://engelschall.com/go/EnTR-03:2013.12
http://pdos.csail.mit.edu/~baford/packrat/popl04/
http://martinfowler.com/eaaDev/PresentationModel.html

C. Bibliography

[Grea] Derek Greer. Interactive Application Architecture Patterns.
URL: http://lostechies.com/derekgreer/2007/08/25/interactive-
application-architecture/ (visited on 06/10/2014).

[Greb] Derek Greer. The Art of Separation of Concerns.
URL: http://aspiringcraftsman.com/2008/01/03/art-of-separation-
of-concerns/ (visited on 06/13/2014).

[Har] John Harding. Flash and the HTML5 <video> tag.
URL: http://apiblog.youtube.com/2010/06/flash-and-html5-tag.
html (visited on 05/27/2014).

[Hua] Yi Ming Huang. Find and resolve browser memory leaks caused by
JavaScript and Dojo.
URL: http : / / www . ibm . com / developerworks / library / wa - sieve/
(visited on 06/13/2014).

[Lev66] VI Levenshtein. „Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals“. In: Soviet Physics Doklady 10 (1966), p. 707.

[Lie94] Håkon Wium Lie. „Cascading Style Sheets“. PhD thesis. University of
Oslo, Faculty of Mathematics and Natural Sciences, 1994.

[Lik] Jeremy Likness. Model-View-ViewModel (MVVM) Explained. Appendix B:
Pre-existing MVVM Frameworks.
URL: http://www.codeproject.com/Articles/100175/Model-View-
ViewModel-MVVM-Explained (visited on 06/10/2014).

[Mak] Hayim Makabee. Separation of Concerns.
URL: http://effectivesoftwaredesign.com/2012/02/05/separation-
of-concerns/ (visited on 06/13/2014).

[Mar10] AndreasMartens.Architekturbasiertes Vorgehensmodell zur Identifizierung
und Lokalisierung von Architektur-Kriterien in Enterprise-Anwendungen.
[Architecture based process modell for identifying and locating architec-
ture criteria in enterprise applications]. University of Paderborn, 2010.

[McC] Brian McCallister. Bulkheads.
URL: http://skife.org/architecture/fault-tolerance/2009/12/
31/bulkheads.html (visited on 06/11/2014).

[Mey+] Leo A. Meyerovich et al. Flapjax: A Programming Language for Ajax Ap-
plications. Section 3.4: Propagation.

[Mod] Mitchell Model. Model View Controller History.
URL: http://c2.com/cgi/wiki?ModelViewControllerHistory (visited
on 06/06/2014).

[MSDN] Microsoft MSDN. Implementing the MVVM Pattern Using the Prism Li-
brary 5.0 for WPF.
URL: http : / / msdn . microsoft . com / en - us / library / gg405484(v =
pandp.40).aspx (visited on 06/10/2014).

186

http://lostechies.com/derekgreer/2007/08/25/interactive-application-architecture/
http://lostechies.com/derekgreer/2007/08/25/interactive-application-architecture/
http://aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/
http://aspiringcraftsman.com/2008/01/03/art-of-separation-of-concerns/
http://apiblog.youtube.com/2010/06/flash-and-html5-tag.html
http://apiblog.youtube.com/2010/06/flash-and-html5-tag.html
http://www.ibm.com/developerworks/library/wa-sieve/
http://www.codeproject.com/Articles/100175/Model-View-ViewModel-MVVM-Explained
http://www.codeproject.com/Articles/100175/Model-View-ViewModel-MVVM-Explained
http://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
http://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
http://skife.org/architecture/fault-tolerance/2009/12/31/bulkheads.html
http://skife.org/architecture/fault-tolerance/2009/12/31/bulkheads.html
http://c2.com/cgi/wiki?ModelViewControllerHistory
http://msdn.microsoft.com/en-us/library/gg405484(v=pandp.40).aspx
http://msdn.microsoft.com/en-us/library/gg405484(v=pandp.40).aspx

[Nil02] Jimmy Nilsson. .NET Enterprise Design with Visual Basic .NET and SQL
Server 2000. Sams, 2002.

[Nyg] Michael Nygard. Stability Patterns ...and Antipatterns.
URL: http : / / cdn . oreillystatic . com / en / assets / 1 / event / 79 /
Stability%20Patterns%20Presentation.pdf (visited on 06/11/2014).

[Pic] Sundar Pichai. Introducing the Google Chrome OS.
URL: http : / / googleblog . blogspot . de / 2009 / 07 / introducing -
google-chrome-os.html (visited on 05/27/2014).

[Rm] THE REACTIVE MANIFESTO.
URL: http://www.reactivemanifesto.org/ (visited on 06/11/2014).

[Sha] Dharmesh Shah. The Thin Client, Thick Client Cycle.
URL: http : / / onstartups . com / tabid / 3339 / bid / 161 / The - Thin -
Client-Thick-Client-Cycle.aspx (visited on 05/27/2014).

[Smi] Josh Smith. Google Groups - Thought: MVVM eliminates 99% of the need
for ValueConverters.
URL: https://groups.google.com/forum/#!topic/wpf-disciples/P-
JwzRB_GE8 (visited on 06/10/2014).

[Sto] Paul Stovell. What is Reactive Programming?
URL: http://paulstovell.com/blog/reactive-programming (visited
on 06/11/2014).

[SW] Artem Syromiatnikov and Danny Weyns. A Journey Through the Land of
Model-View-* Design Patterns.
URL: http://homepage.lnu.se/staff/daweaa/papers/2014WICSA.pdf
(visited on 06/11/2014).

[Vaa13] Christian Vaas. Pattern Guideline and Constraint Validation of Run-time
Communication in User Interface Component Architectures. 2013.

[Vog] Lars Vogel. JFace Data Binding - Tutorial.
URL: http : / / www . vogella . com / tutorials / EclipseDataBinding /
article.html#databinding_overview (visited on 06/16/2014).

[Wal] David Walsh. How JavaScript Event Delegation Works.
URL: http://davidwalsh.name/event-delegate (visited on 06/20/2014).

[We] wealthfront Engineering. Reactive.js: Functional Reactive Programming
in Javascript.
URL: http://eng.wealthfront.com/2013/04/reactivejs-functional-
reactive.html (visited on 06/11/2014).

[Weba] Application Specification — TodoMVC.
URL: https://github.com/tastejs/todomvc/blob/master/app-spec.
md (visited on 09/11/2014).

[Webb] Pew Research Center. Cell Internet Use 2013 — Main Findings.
URL: http://www.pewinternet.org/2013/09/16/main-findings-2/
(visited on 05/27/2014).

187

http://cdn.oreillystatic.com/en/assets/1/event/79/Stability%20Patterns%20Presentation.pdf
http://cdn.oreillystatic.com/en/assets/1/event/79/Stability%20Patterns%20Presentation.pdf
http://googleblog.blogspot.de/2009/07/introducing-google-chrome-os.html
http://googleblog.blogspot.de/2009/07/introducing-google-chrome-os.html
http://www.reactivemanifesto.org/
http://onstartups.com/tabid/3339/bid/161/The-Thin-Client-Thick-Client-Cycle.aspx
http://onstartups.com/tabid/3339/bid/161/The-Thin-Client-Thick-Client-Cycle.aspx
https://groups.google.com/forum/#!topic/wpf-disciples/P-JwzRB_GE8
https://groups.google.com/forum/#!topic/wpf-disciples/P-JwzRB_GE8
http://paulstovell.com/blog/reactive-programming
http://homepage.lnu.se/staff/daweaa/papers/2014WICSA.pdf
http://www.vogella.com/tutorials/EclipseDataBinding/article.html#databinding_overview
http://www.vogella.com/tutorials/EclipseDataBinding/article.html#databinding_overview
http://davidwalsh.name/event-delegate
http://eng.wealthfront.com/2013/04/reactivejs-functional-reactive.html
http://eng.wealthfront.com/2013/04/reactivejs-functional-reactive.html
https://github.com/tastejs/todomvc/blob/master/app-spec.md
https://github.com/tastejs/todomvc/blob/master/app-spec.md
http://www.pewinternet.org/2013/09/16/main-findings-2/

C. Bibliography

[Webc] Commercial Rich client platform (RCP) applications.
URL: https://www.eclipse.org/community/rcpcp.php (visited on
06/16/2014).

[Webd] Data Binding Overview.
URL: http://msdn.microsoft.com/de-de/library/ms752347(v=vs.
110).aspx (visited on 06/18/2014).

[Webe] Event delegation in JavaScript.
URL: http://facebook.github.io/react/docs/reconciliation.html
(visited on 06/20/2014).

[Webf] Facebook React.
URL: http://facebook.github.io/react/ (visited on 06/20/2014).

[Webg] Facebook React — Getting Started.
URL: http://facebook.github.io/react/docs/getting-started.
html (visited on 06/20/2014).

[Webh] Facebook React — Tutorial.
URL: http://facebook.github.io/react/docs/tutorial.html (visited
on 06/20/2014).

[Webi] Miniwatts Marketing Group. Internet World Stats.
URL: http://www.internetworldstats.com/stats.htm (visited on
05/27/2014).

[Webj] Introduction to WPF.
URL: http://msdn.microsoft.com/de-de/library/aa970268(v=vs.
110).aspx (visited on 06/18/2014).

[Webk] JavaServer Faces Technology.
URL: http://www.oracle.com/technetwork/java/javaee/javaserverfaces-
139869.html (visited on 06/17/2014).

[Webl] JFace Data Binding/The New Binding API.
URL: http://wiki.eclipse.org/index.php?title=JFace_Data_
Binding/The_New_Binding_API&oldid=358773 (visited on 06/16/2014).

[Webm] KnockoutJS — Creating custom bindings.
URL: http://knockoutjs.com/documentation/custom-bindings.html
(visited on 06/20/2014).

[Webn] KnockoutJS — The data-bind syntax.
URL: http://knockoutjs.com/documentation/binding-syntax.html
(visited on 06/20/2014).

[Webo] KnockoutJS — The "foreach" binding.
URL: http://knockoutjs.com/documentation/foreach-binding.html
(visited on 06/20/2014).

[Webp] KnockoutJS — The "with" binding.
URL: http://knockoutjs.com/documentation/with- binding.html
(visited on 06/20/2014).

[Webq] Knockoutjs.com. MVVM and View Models.
URL: http://knockoutjs.com/documentation/observables.html (vis-
ited on 06/10/2014).

188

https://www.eclipse.org/community/rcpcp.php
http://msdn.microsoft.com/de-de/library/ms752347(v=vs.110).aspx
http://msdn.microsoft.com/de-de/library/ms752347(v=vs.110).aspx
http://facebook.github.io/react/docs/reconciliation.html
http://facebook.github.io/react/
http://facebook.github.io/react/docs/getting-started.html
http://facebook.github.io/react/docs/getting-started.html
http://facebook.github.io/react/docs/tutorial.html
http://www.internetworldstats.com/stats.htm
http://msdn.microsoft.com/de-de/library/aa970268(v=vs.110).aspx
http://msdn.microsoft.com/de-de/library/aa970268(v=vs.110).aspx
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://wiki.eclipse.org/index.php?title=JFace_Data_Binding/The_New_Binding_API&oldid=358773
http://wiki.eclipse.org/index.php?title=JFace_Data_Binding/The_New_Binding_API&oldid=358773
http://knockoutjs.com/documentation/custom-bindings.html
http://knockoutjs.com/documentation/binding-syntax.html
http://knockoutjs.com/documentation/foreach-binding.html
http://knockoutjs.com/documentation/with-binding.html
http://knockoutjs.com/documentation/observables.html

[Webr] Mac Developer Library. Cocoa Core Competencies - Model object.
URL: https://developer.apple.com/library/mac/documentation/
general / conceptual / devpedia - cocoacore / ModelObject . html # / /
apple_ref/doc/uid/TP40008195-CH31-SW1 (visited on 06/06/2014).

[Webs] MacDeveloper Library.Cocoa Core Competencies -Model-View-Controller.
URL: https://developer.apple.com/library/mac/documentation/
general / conceptual / devpedia - cocoacore / MVC . html (visited on
06/06/2014).

[Webt] MVVM: ViewModel and Business Logic Connection.
URL: http://stackoverflow.com/questions/16338536/mvvm-viewmodel-
and-business-logic-connection (visited on 06/10/2014).

[Webu] Ractive.js — The diamond age of web development.
URL: http://www.ractivejs.org/ (visited on 06/20/2014).

[Webv] Rich Client Platform/FAQ.
URL: http://wiki.eclipse.org/index.php?title=Rich_Client_
Platform/FAQ&oldid=328452 (visited on 06/16/2014).

[Webw] Paul Sasik. Why use MVVM?
URL: http://stackoverflow.com/questions/2653096/why-use-mvvm
(visited on 06/10/2014).

[Webx] Templates are not HTML valid — Ractive Issues.
URL: https://github.com/ractivejs/ractive/issues/185 (visited on
06/23/2014).

[Weby] The Java EE 6 Tutorial —Managed Beans in JavaServer Faces Technology.
URL: http://docs.oracle.com/javaee/6/tutorial/doc/bnaqm.html
(visited on 06/17/2014).

[Webz] The Java EE 6 Tutorial — Referring to Object Properties Using Value Ex-
pressions.
URL: http://docs.oracle.com/javaee/6/tutorial/doc/bnahu.html#
bnahx (visited on 06/17/2014).

[Webaa] Arjan Tijms. Understanding JSF as a MVC framework.
URL: http://stackoverflow.com/questions/10111387/understanding-
jsf-as-a-mvc-framework (visited on 06/17/2014).

[Webab] UpdateTargetTrigger.
URL: http://stackoverflow.com/questions/13434675/updatetargettrigger
(visited on 06/18/2014).

[Webac] Usage statistics and market share of JQuery for websites.
URL: http://w3techs.com/technologies/details/js-jquery/all/
all (visited on 09/03/2014).

[Wikia] Wikipedia. Fat client — Wikipedia, The Free Encyclopedia.
URL: http://en.wikipedia.org/w/index.php?title=Fat_client&
oldid=600016640#Advantages (visited on 05/27/2014).

[Wikib] Wikipedia. KnockoutJS — Wikipedia, The Free Encyclopedia.
URL: http://en.wikipedia.org/w/index.php?title=KnockoutJS&
oldid=611805640 (visited on 06/10/2014).

189

https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/ModelObject.html#//apple_ref/doc/uid/TP40008195-CH31-SW1
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/ModelObject.html#//apple_ref/doc/uid/TP40008195-CH31-SW1
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/ModelObject.html#//apple_ref/doc/uid/TP40008195-CH31-SW1
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/MVC.html
http://stackoverflow.com/questions/16338536/mvvm-viewmodel-and-business-logic-connection
http://stackoverflow.com/questions/16338536/mvvm-viewmodel-and-business-logic-connection
http://www.ractivejs.org/
http://wiki.eclipse.org/index.php?title=Rich_Client_Platform/FAQ&oldid=328452
http://wiki.eclipse.org/index.php?title=Rich_Client_Platform/FAQ&oldid=328452
http://stackoverflow.com/questions/2653096/why-use-mvvm
https://github.com/ractivejs/ractive/issues/185
http://docs.oracle.com/javaee/6/tutorial/doc/bnaqm.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnahu.html#bnahx
http://docs.oracle.com/javaee/6/tutorial/doc/bnahu.html#bnahx
http://stackoverflow.com/questions/10111387/understanding-jsf-as-a-mvc-framework
http://stackoverflow.com/questions/10111387/understanding-jsf-as-a-mvc-framework
http://stackoverflow.com/questions/13434675/updatetargettrigger
http://w3techs.com/technologies/details/js-jquery/all/all
http://w3techs.com/technologies/details/js-jquery/all/all
http://en.wikipedia.org/w/index.php?title=Fat_client&oldid=600016640#Advantages
http://en.wikipedia.org/w/index.php?title=Fat_client&oldid=600016640#Advantages
http://en.wikipedia.org/w/index.php?title=KnockoutJS&oldid=611805640
http://en.wikipedia.org/w/index.php?title=KnockoutJS&oldid=611805640

C. Bibliography

[Wikic] Wikipedia. Model–view–controller — Wikipedia, The Free Encyclopedia.
URL: http://en.wikipedia.org/w/index.php?title=Model%C3%A2%
C2%80%C2%93view%C3%A2%C2%80%C2%93controller&oldid=610228884
(visited on 06/06/2014).

[Wikid] Wikipedia. Reactive programming — Wikipedia, The Free Encyclopedia.
URL: http://en.wikipedia.org/w/index.php?title=Reactive_
programming&oldid=612098085 (visited on 06/11/2014).

[Zak] Nicholas C. Zakas. Event delegation in JavaScript.
URL: http://www.nczonline.net/blog/2009/06/30/event-delegation-
in-javascript/ (visited on 06/20/2014).

190

http://en.wikipedia.org/w/index.php?title=Model%C3%A2%C2%80%C2%93view%C3%A2%C2%80%C2%93controller&oldid=610228884
http://en.wikipedia.org/w/index.php?title=Model%C3%A2%C2%80%C2%93view%C3%A2%C2%80%C2%93controller&oldid=610228884
http://en.wikipedia.org/w/index.php?title=Reactive_programming&oldid=612098085
http://en.wikipedia.org/w/index.php?title=Reactive_programming&oldid=612098085
http://www.nczonline.net/blog/2009/06/30/event-delegation-in-javascript/
http://www.nczonline.net/blog/2009/06/30/event-delegation-in-javascript/

	Big Picture
	Evolution of the Web
	Rich Web Clients

	The View Data Binding Problem
	Architectural Patterns in Web Applications
	Model-View-Controller (MVC)
	Model-View-ViewModel (MVVM)
	Model-View-Controller / Component Tree (MVC/CT)

	Manual View Data Binding
	TodoMVC
	msg TimeSheet

	Reactive Programming
	Motivation

	Existing Solutions for View Data Binding
	Solutions targeting Desktop and Thin Web Clients
	Eclipse Rich Client Platform (RCP)
	JavaServer Faces (JSF)
	Windows Presentation Foundation (WPF)

	Libraries for Rich Web Clients
	Facebook React
	Ractive.js
	KnockoutJS
	Other Libraries

	Comparison of Rich Web Client Libraries
	Methodology
	Results and Conclusion

	Concept and View Data Binding Ontology
	View Data Binding Concepts
	Core Binding Concepts
	Selection
	Binding
	Adapter
	Connector
	Binding Scope

	Iteration

	Core Structure Concepts
	Identification
	Insertion

	Convenience Binding Concepts
	Two-Way Binding
	One-Time Binding
	Resource Sequence
	Initiator
	Parameter
	Expression

	Convenience Structure Concepts
	Template

	Domain Specific Language

	Implementation, BindingJS
	Architecture
	Application User Interface
	Public api
	Binding api
	Socket api
	Plugin api

	Algorithms
	Repositories
	Binding Scope
	Parser
	Preprocessor
	Iterator
	Propagator
	Sockets

	Evaluation, BindingJS
	Comparison with other Rich Web Client Libraries
	Employment in Applications
	TodoMVC
	msg TimeSheet

	Conclusion and Future Work
	Appendix
	Comparison of Rich Web Client Libraries
	Criteria Catalog
	Evaluation
	List of Libraries

	Code Listings
	Figures

	Glossary
	Bibliography

