

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

Institut für Software & Systems Engineering
Universitätsstraße 6a D-86135 Augsburg

From High-Usability Cross-Device
Wireframe-Based Storyboards to

Component-Oriented
Responsive-Design User

Interfaces

Stefanie Grewenig

Masterarbeit im Elitestudiengang Software Engineering

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

Institut für Software & Systems Engineering
Universitätsstraße 6a D-86135 Augsburg

From High-Usability Cross-Device
Wireframe-Based Storyboards to

Component-Oriented
Responsive-Design User

Interfaces

Matrikelnummer: 1228728
Beginn der Arbeit: 02. September 2013
Abgabe der Arbeit: 03. März 2014
Erstgutachter: Prof. Dr. Alexander Knapp
Zweitgutachter: Prof. Dr. Bernhard Bauer
Betreuer: Dipl.-Inf. Univ. Ralf S. Engelschall

ERKLÄRUNG

Hiermit versichere ich, dass ich diese Masterarbeit selbständig verfasst habe. Ich habe dazu keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet.

München, den 3. März 2014 Stefanie Grewenig

Abstract

In recent years, the usage of wireframes to draw an initial specification for a user interface has
become increasingly common. Even though they have great benefits in terms of rapidly sketching
the state of a system and documenting basic user interactions, they lack in capturing key aspects
of a user interface design, such as the relation between a task and a particular wireframe. Existing
model-based approaches that target those problems are often not practical due to heavy-weight and
hard to maintain models. Typically they are closed environments and do not integrate well in the
software engineering process.
In this thesis we introduce Wireframe-Driven User Interface Design (WDD), which provides a low

barrier of entry for the use in everyday software projects. It builds on top of a powerful model that
interrelates a series of declarative models, such as user tasks, data objects and wireframes.
With Wireframe2Artefact, we provide a model-based software tool that enables designers and

engineers to rapidly specify a user interface without being hung up on modelling details. Wire-
frame2Artefact is built on a powerful XML-based meta-level modelling language. In a case study,
we demonstrate how our tool can be used to specify and evaluate the user interface of the P1-
Timesheet time account app developed at msg systems ag.

vii

Contents

List of Figures xiii

1. Introduction 1
1.1. Objective and Motivation . 1
1.2. State of the Art . 1
1.3. Contribution . 2
1.4. Structure of this Thesis . 2

2. User Interface Design 3
2.1. Initial UI Design . 3

2.1.1. Task Analysis . 3
2.1.2. Domain Modelling . 4
2.1.3. Creating Low-Fidelity Prototypes . 4

2.2. Refining UI Designs . 4
2.2.1. Storyboarding . 5
2.2.2. Analyzing the Flow of Events . 5

2.3. Implementing the UI Design . 5

3. Requirements and Related Work 7
3.1. Requirements . 7

3.1.1. Specifying UI Designs . 7
3.1.2. Views on UI Designs . 8
3.1.3. Estimation of UI Designs . 8
3.1.4. Specifying responsive UI Designs . 8

3.2. Related Work . 9
3.2.1. Classic Interface Design Tools . 9
3.2.2. Model-Based Interface Design Approaches . 10
3.2.3. User Interface Description Languages . 11
3.2.4. Shortcomings . 12

4. Wireframe-Driven UI Design 15
4.1. Overview . 15
4.2. User Interface Model . 16

4.2.1. Task Model . 16
4.2.2. Data Model . 17
4.2.3. Wireframe Model . 17
4.2.4. Example . 19

4.3. Storyboard View . 22
4.3.1. Definition . 22
4.3.2. Approach . 22
4.3.3. Equality . 24

ix

Contents

4.3.4. Example . 24
4.4. Dataflow View . 25

4.4.1. Definition . 25
4.4.2. Approach . 25
4.4.3. Equality . 26
4.4.4. Example . 27

4.5. Architecture View . 28
4.5.1. Definition . 28
4.5.2. Approach . 28
4.5.3. Equality . 31
4.5.4. Example . 32

4.6. Evaluation of UI Designs . 35
4.6.1. Example . 35

5. Tool: Wireframe2Artefact 39
5.1. Overview . 39
5.2. User Interface DSL . 39
5.3. Features . 41
5.4. Architecture . 43
5.5. Current Limitations . 44

6. Case Study 47
6.1. P1-Timesheet App . 47
6.2. Specification of the UI . 47
6.3. Comparison of the Component Trees . 49
6.4. Lessons Learned . 50
6.5. Full example . 51

7. Towards responsive User Interfaces 53
7.1. Overview . 53
7.2. Assisting responsive User Design . 53
7.3. Adapting the front-end architecture derivation . 54

7.3.1. Similarity Definition for Elements and Components 54
7.3.2. Handling shared Components . 54

8. Further Work and Conclusion 57
8.1. Conclusion . 57
8.2. Future work . 58

A. List of Wireframe Element Types 61

B. Wireframe2Artefact Screenshots 63

C. P1-Timesheet 67
C.1. Storyboards . 67
C.2. Data Flow Diagrams . 69

D. RelaxNG Schemas 71
D.1. RelaxNG Schema of the Balsamiq Model . 71
D.2. RelaxNG Schema of the Wireframe Task Model . 73

x

Contents

D.3. RelaxNG Schema of the Wireframe Data Model . 73
D.4. RelaxNG Schema of the Wireframe Model . 74

D.4.1. RelaxNG Schema of the Wireframe Attributes 78
D.4.2. RelaxNG Schema of the Wireframe Container Elements 79
D.4.3. RelaxNG Schema of the Wireframe Input Elements 80
D.4.4. RelaxNG Schema of the Wireframe Layout Elements 83
D.4.5. RelaxNG Schema of the Wireframe Media Elements 84
D.4.6. RelaxNG Schema of the Wireframe Mobile Elements 85
D.4.7. RelaxNG Schema of the Wireframe Text Elements 85
D.4.8. RelaxNG Schema of the Wireframe Annotation Elements 86

xi

List of Figures

3.1. UI Design . 10
3.2. Result of XIML example . 11
3.3. USIXML Model Collection [Lim+05] . 12

4.1. UI Model . 15
4.2. User Interface Model . 16
4.3. Elements Submodel . 17
4.4. Interaction model . 18
4.5. my to-do app - wireframes . 20
4.6. Storyboard Submodel . 22
4.7. Dataflow Submodel . 25
4.8. my to-do app - dataflow . 27
4.9. Component Tree Submodel . 28
4.10. "my to-do app" - after pre-processing . 32
4.11. my to-do app - Component Tree . 34

5.1. Screenshot of the wireframe model tab . 42
5.2. BMML to WXML . 43
5.3. Grid sketched with Balsamiq . 43

6.1. Component Tree . 50
6.2. Component Tree derived by Wireframe2Artefact . 50

B.1. Wireframe Tab . 63
B.2. Task Tab . 63
B.3. Data Tab . 64
B.4. Storyboard Tab . 64
B.5. Data Flow Tab . 65
B.6. Component Tree Tab . 65

C.1. Login Storyboard . 67
C.2. Create Entry Storyboard . 68
C.3. Copy Entry Storyboard . 68
C.4. Login Data Flow Diagram . 69
C.5. Create Entry Data Flow Diagram . 69
C.6. Copy Entry Data Flow Diagram . 69

xiii

1. Introduction
We start with a brief introduction of the challenges during the user interfaces design process. (sec-
tion 1.1). Next we summarize the state of the art (section 1.2), followed by our contribution (sec-
tion 1.3) to the field of user interface design. Last we outline the structure of this thesis (section 1.4).

1.1. Objective and Motivation
“If I can’t picture it, I can’t understand it. ” — Albert Einstein

According to most software engineering approaches, wireframes are a widely spread mechanism to
deliver the initial specification for a user interface. Even though the term wireframe varies from
organization to organization, it typically covers the following three aspects. First, it shows the main
content in a screen. Second, it shows the structure of the information displayed on the screen and
third, it briefly describes how the user interacts with the system.
The wireframing process has proven to be very effective, especially when gathering and commu-

nicating requirements between designers and developers. Nevertheless they usually fail in answering
key questions such as: how wireframes are involved in accomplishing a particular task; what data is
represented through a widget on the screen.
The answer to these questions is crucial to know in order to sufficiently specify and implement the

user interface. Usually the developer overcomes those challenges by experience or by distilling the
information from loosely connected documents, such as: domain model and description of the user
tasks. This practice is no sustainable solution, especially when designing complex user interfaces.
Consequently an approach is needed to master those challenges and provide the possibility to capture
all aspects of a user interface design.

1.2. State of the Art
A number of methods and tools to describe, create and maintain user interface have been adopted
by the industry. They require different skill sets, starting from knowledge about basic user interface
design terminology up to expert modelling experience. It is not surprising that the resulting designs
range from simple images up to fine-grained formal models. Whereas, most user interface design
tools offer the designer ample support to rapidly manage and layout widgets on a screen. They lack
in providing a possibility to capture information other than the graphical representation of the user
interface. In strong contrast, model-based approaches capture most relevant aspects of user interface
design, but fall short tp provide a solution to effortlessly create and maintain those models. They
come with a high barrier of entry and are usually closed development units and do not integrate
well with common software engineering methods.
Current user interface design approaches and environments lack the ability to capture all relevant

aspects of user interface design without restricting, limiting or complicating the design process.

1

1. Introduction

1.3. Contribution
This thesis proposes the Wireframe-Driven user interface Design approach (WDD) which introduces
three key innovations to user interface design:

Universal Model We offer a powerful model that tightly connects all relevant aspects of everyday
user interface design to provide a sufficient representation of a user interface. It interrelates a
series of declarative models, such as user tasks, domain model and wireframes to provide a formal
representation of a user interface. It provides a low barrier of entry for the use in everyday software
projects and allows rapid user interface design without being bogged down by modelling details.
Specifying a user interface can be done very intuitively by manipulating concepts such as tasks,
data objects, widgets and their interactions.

Multiple Views Our approach emphasizes the collaboration of different professions as well as
continuous end-user involvement. We provide tailored views on the user interface model to make
it possible for different professions to communicate effectively. Even though our approach does
not focus on code generation of the user interface, we provide an educated guess for the frontend
architecture of a user interface design.

Design Evaluation We offer a set of metrics that focuses on the impacts a user interface design
has on software construction and the overall development process. Furthermore, designers and
developers can assure that all tasks and data objects are embodied in the user interface design and
visualized through one or more wireframes.

1.4. Structure of this Thesis
To accomplish this goal, this thesis will first explain the basic concepts it is built on, such as the
user interface and a component-oriented architecture (chapter 2).We will then try to identify com-
mon scenarios and derive applicable requirements that we think are crucial to efficiently generate
and evaluate user interface designs in the real world (section 3.1), before examining the existing
solutions both academic and commercial (section 3.2). We give a detailed explanation of our ap-
proach (chapter 4) and its implementation (chapter 5) before demonstrating its usage by comparing
and analyzing our outputs against the actual implementation and specification of a time account
application, P1-Timesheet, developed at msg systems ag (chapter 6). We will then propose basic
concepts to extend our approach to work with responsive user interface designs.(chapter 7). The
thesis closes with a short conclusion and hints on possible further research topics (chapter 8).

2

2. User Interface Design
This chapter aims to give a broad overview of the concepts this thesis is built on and establishing
a basic vocabulary to use for the remainder of this thesis. We start with a brief explanation of the
initial user interface design (2.1) and what information and artefacts are needed during this process.
Since user interface design has no widely accepted definition, we define this process covering the
activities from start of design to a detailed description of the user interface, which can be used for
implementation. Such a detailed description can be defined in one or more artefacts, e.g. formal
models, class diagrams, etc.. We give a glimpse at the methodologies used to refine user interface
designs (2.2) and close with a brief introduction of common heuristics used to modularize a user
interface in a component-oriented fashion (2.3).

2.1. Initial UI Design
Specifying and documenting the user interface starts at early stages of the software development
process and is typically part of the requirements engineering phase [Bra02], [HJD10]. Different from
the software development process, activities of the user interface design process vary widely from
organization to organization. Despite all differences, almost every user interface design effort will at
some point do the following[RF13]:

1. Analyzing and specifying a set of user tasks

2. Modeling domain objects and their relations

3. Sketching the user interface

In the following section we introduce those concepts in detail.

2.1.1. Task Analysis

Activity Theory WDD
Motive Activity
Goal Action Task

Condition Operation Step
Interaction

Table 2.1.: Task Ontology

Eliciting user tasks is one of the first steps when
building a software system and is usually part of
the requirements engineering process. It consists
of many activities, such as analysis, specification
and validation. Different from the software devel-
opment process, activities of the requirement engi-
neering process vary, depending on the type of sys-
tem being developed. There are plenty of concepts
and tools on how to gather and document the user
tasks. Classic software engineering methods tend to
prefer use-cases to document their requirements. Software projects relying on agile principles opt
for user stories.
For the course of this thesis we classify a user task as followed (see table 2.1): Our definition of

the term user task is based on the terminology of the activity theory [PhD13], proposing the concept
of activities, actions and operations. An activity is based on motives, in requirements engineering

3

2. User Interface Design

we want to understand the users’ motivation to interact with the system. The action is defined by
its goal and a set of individual steps. These steps have to be performed in order to complete an
activity. Other than the activity, an action is independent from the users’ motivation. An operation1

represents the execution level of an action and does not rely on a goal.
In short, a task is described through a set of steps, which explain how the user can fulfill the task.

An interaction can be seen as the click on a button and is bound to a condition, e.g. state of the
button is not allowed to be disabled in order to click the button.

2.1.2. Domain Modelling
Domain analysis, as seen from a software engineering perspective is defined as the following [Pri90]:
The process by which information used in developing software systems is identified, captured and
organized.
The industry adopted a variety of concepts and tools to describe and document domain models

during early stages of the software engineering process. Common methods are: UML class diagrams,
entity-relationship diagrams or data dictionaries. During the course of this thesis we will refer to
the domain model as a model that captures the core data objects and their relations, needed when
creating a new system.

2.1.3. Creating Low-Fidelity Prototypes
Low-fidelity prototypes can be used to describe any human-computer interaction. They focus on
the visible information and the flow of events and functionality. Usually they lack in typography,
color and graphics and do not feature the look and feel of a system [RF13], [SB10]. Nowadays the
following methods are widely spread to create low fidelity prototypes: Content inventories, sticky
notes, wireframes, paper prototypes or mockups. Prototypes are generally created by business
analysts, interaction designers, usability experts, developers and the user themselves.
In this thesis we focus on wireframes, which typically have the following three features: Basic

UI elements, simple interaction design and layout options. Approaches and tools that ensure these
features are common and widely spread. Wireframes have proven effective in communicating re-
quirements[PMM05], nevertheless they are not intended to be a full specification of a user interface.
Designers typically produce wireframes based on the information gathered with other methodologies,
such as task analysis or domain modelling.

2.2. Refining UI Designs
The level of abstraction of a user interface design depends on multiple factors: Complexity of the
user interface, experience of UIs designer and engineers, importance of usability or simply on the
projects size and costs. One objective of refining a user interface is to capture and document the
interrelation of the information of an initial user interface design. These can be done by creating
storyboards and visualizing the users’ interactions within a task. A description of the flow of events
describes the interrelation between domain objects and the users’ interactions with the system. The
following section give a brief introduction to both concepts: Storyboarding and documenting the
flow of events.

1Note that the term operation will be further used in another context (chapter 4).

4

2.3. Implementing the UI Design

2.2.1. Storyboarding
There is no widely accepted definition of the term storyboarding in terms of user interface design.
In our thesis we refer to the following definition [SB10]. The storyboard is an ordered set of sketches
(wireframes) or screenshots (demonstrators). It serves to visualize the main forms of the event chain
defined by the actions of the user.
In other words, the designer sketches various states of the user interface. These sketches are then

assembled into a storyboard, representing the state changes of the user interface during a task. In
the storyboarding context, these sketches of the UI are called keyframes. Transitions between those
sketches are called actions.
Other than wireframing tools, storyboarding tools especially made for the purpose of creating and

refining user interface designs are rather uncommon. Moreover, refining a user interface through a
storyboard is usually done manually, by describing a task through an ordered subset of wireframes
and interactions.

2.2.2. Analyzing the Flow of Events
When designing a user interface, it is not only important to specify and document how the user
interacts with the system. The activity of analyzing the flow of events is generally done during
early stages of the engineering process. The industry adopted a wide range of methodologies to do
so. Sequence diagrams have proven to offer a great form to document the flow of events[Fow04].
A sequence diagram can be based on a user task[AI07]. It represents the user interaction with the
system as well as the systems’ internal communication.
In other words: high-level sequence diagrams represent a user task through an ordered set of

operations on a set of data objects.

2.3. Implementing the UI Design
When it comes to designing the architecture of a software system, the functionality is separated from
the frontend and the code is cut into handy chunks to handle the complexity and allow reusabil-
ity. When identifying components from the frontend of an application we typically want maximum
reusability of user interface elements in terms of human recognition and from a technical imple-
mentation point of view. In order to achieve this goal we need to understand what elements are
displayed and when. This information can be gathered by a set of wireframes describing the visible
elements of a user interface.
The approach proposed by [Engc] has proven to have great benefits, when modularizing and

describing the architecture of a user interface in a so called "component tree". The goal of the
component tree, as the name implies, is to assemble the containment hierarchy of a user interface
through arranging the components of a user interface in a tree.
In summary, a component tree represents the elements of a set of wireframes grouped into com-

ponents and organized in a hierarchical structure.

5

3. Requirements and Related Work
To assess and compare the state of the art, this chapter will define a set of scenarios we want to
focus on. Based on these scenarios we derive applicable requirements and scope (section 3.1). The
following section aims at giving a broad overview of the current state of the user interface design
approaches and related areas (section 3.2). The last section closes with the validation against our
requirements and summarizes the shortcomings.

3.1. Requirements
First, we define scenarios in which wireframe-driven software design can be applied. These scenarios
target common problems designers, engineers an domain experts are faced with in all stages of the
user interface design. They are not meant to cover all imaginable scenarios, but to define a sope for
this thesis. Based on this scenarios, we derive requirements to define a context for the conceptual
approach as well as the corresponding tool support.

3.1.1. Specifying UI Designs
In early stages of the development the conception of the UI follows a similar approach: based on
user tasks and domain objects the designer sketches the UI. These high-level sketches help to draw
an initial specification of a UI without being lost in details. Nevertheless simple sketches fall short in
providing any notation or concept to enhance the initial specification. They usually cannot answer
key questions, such as how a wireframe is involved in accomplishing a certain task or what domain
objects are involved in it. Answering those questions is usually done by assembling wireframes into
storyboards or creating data flow diagrams. Maintaining and synchronizing those artefacts with the
initial specification is time consuming and requires heavy refactoring work, especially when designing
a complex user interfaces. We need an approach that captures the interrelation between the concepts
of a wireframes, domain objects and user tasks in one user interface model.

Requirement 1 The approach must support and guide the process of user interface design based
on a powerful model

Requirement 2 The approach must allow the user to capture the relation between wireframes, user
tasks and domain objects

Specifying a model is relatively difficult, due to a heavy model maintenance effort and a steep
learning curve. Whereas sketching a user interface is low in costs and no special skills are needed to
participate during the sketching process.

Requirement 3 The tooling must hide the model from the user

Requirement 4 The tooling must provide an easy and self-descriptive way to specify and document
user interface, without learning a modelling language

7

3. Requirements and Related Work

Furthermore, model-based environments are usually closed development units. To integrate well
with the software engineering process our tooling should enable starting and/or continuing the
specification of a user interface using multiple methods or tools.

Requirement 5 The tooling should provide a mechanism to use the output of other independent
tools

Requirement 6 The tooling should provide a mechanism to provide suitable output which can be
used by other tools

Moreover, the approach should be valid whether the user interface design has been created incre-
mental in different sprints in an agile project or all at once in a sequential design process, as in the
waterfall model.

Requirement 7 The approach must be independent from the software engineering method

Requirement 8 The approach must allow incremental prototyping

3.1.2. Views on UI Designs
One objective of these wireframes is to communicate requirements between domain experts, designers
and software engineers. Domain experts, who usually do not have a background in sketching a
user interface, describe a user interface in terms of tasks, roles and domain objects. Whereas a
human-computer-interaction experts treat the features of a system as a black box and focus on the
navigation through the user interface and the organization of widgets and windows. In contrast,
software engineers will not touch the graphic design of a user interface, but want to classify tasks
into features and estimate size and complexity of a sketched user interface. In order for these
three to communicate effectively it is crucial to provide tailored views on the user interface for each
professional.

Requirement 9 The approach must provide views for each profession

3.1.3. Estimation of UI Designs
When talking about user interfaces and usability it is common to create multiple alternative designs,
which differ from each other by the wireframes. A decision for a design is typically based on:
Evaluation of usability experts, usability constraints and design criteria. With common approaches
it is impossible to compare the designs by the impacts they have on the system: Size and complexity
of the frontend architecture or the flow of data during a task. By providing a set of metrics based
on the user interface design we provide an abstract view on the design. In addition we provide a
way to compare different designs by metrics other than usability constraints and design criteria.

Requirement 10 The approach must define a set of metrics to estimate the size and complexity of
the user interface design

3.1.4. Specifying responsive UI Designs
Nowadays user interfaces are developed to run on multiple types of devices, such as phones, tablets
or desktops.

Requirement 11 The approach must allow specifying responsive user interface designs

8

3.2. Related Work

3.2. Related Work
A number of papers have attempted to cover different tools and techniques to allow powerful user
interface design. This section aims at giving a broad overview of the existing concepts and techniques.
As there is no widely accepted definition of user interface design methodologies we classified the fairly
wide number of methodologies into classic interface design tools, model-based approaches and user
interface description languages. We will focus on tools and approaches that are widely spread and
actively used in academia or industry.

3.2.1. Classic Interface Design Tools
Classically early interface design tools summarize tools which are designed to specify the user inter-
face design through sketching the state of a user interface.

Tools

Balsamiq Mockup (Balsamiq) 1 is a web-based wireframing tool which allows the designer to
arrange pre-built widgets using a WYSIWYG editor. It can be used to design either mobile or
desktop applications. Moreover the designer is able to express basic user interactions by linking
Balsamiq files. The resulting wireframes can either be exported as image files or as Balsamiq files.
The Balsamiq file (BMML) is defined as an XML-based language and offers representation units,
such as controls and properties.

WireframeSketcher 2 like Balsamiq, is a wireframing-tool with pre-defined widgets and a WYSI-
WYG editor. Additionally the designer is able to organize wireframes into interactive storyboards.
The application is available as desktop version as well as a plug-in for any Eclipse IDE.

Omnigraffle 3 is a multi-purpose drawing tool which provides a set of stencils created for the
purpose of designing wireframes. Although it is not designed for the specific purpose of creating
and maintaining user interfaces, it is commonly used in the industry. Like the other drawing/
wireframing tools, it offers a drag-and-drop, WYSIWYG editor. It does not provide any additional
features to describe user interactions or data objects.

Evaluation

The tools described are a great way to design and maintain wireframes. Focusing on this, they
offer a tremendous set of pre-built widgets, which can be very handy. Using a graphical editor
is understandable for almost everyone involved in the software engineering process (Requirement
4). It allows the user to rapidly sketch a first draft of user interface design. Some even offer the
possibility to describe basic user interactions. But this high-level description of the user interface has
deficiencies. These tools allow manipulating their pre-built widgets, but are completely separated
from any notations of the task that the wireframe implements, as well as any notation of what
domain objects are visualized by a widget. Even though some of them allow the specification of
basic interactions, no concept or notation is provided to specify the relation between interactions
and the operations triggered by them. The WireframeSketcher allows the creation of storyboards
based on the design wireframes. Nevertheless these storyboards have to be created manually and
1http://balsamiq.com/
2http://wireframesketcher.com/
3http://www.omnigroup.com/omnigraffle

9

3. Requirements and Related Work

cannot be enhanced with additional information. Consequently, they are not suitable to describe all
relevant aspects of a user interface design, which we proposed in Requirement 2.

3.2.2. Model-Based Interface Design Approaches
Originating from model-driven software development, models can also be used to create the initial
specification for a user interface. In this approach the engineer defines a high level model of the user
interface based on concepts such as tasks, users and objects [PMM05], [Ang97], [PE02], [Lim+05].
The tool will then support the interface design by guiding the process or even producing deliverables,
such as wireframes.

Tools and Methods

Mobi-D (Model-Based Interface Designer) [Ang97] and its underlying concept was developed
at Stanford University. It provides a meta-level modeling language, which defines the elements of
the user interface, as well as the components, structure and relations within interface models. The
purpose of Mobi-D is to emphasize the communication between the end-user and the interface devel-
oper, in order to allow the end-user to participate in more aspects of the development. Furthermore,
it focuses on capturing the relations between user tasks, domain models and representation units
(widgets, components). Mobi-D achieves this by providing an iterative, user-centered development
cycle: First, the end-user enters a textual description of the user task. Based on the key terms the
tool elicits from the task description, the system guides the end-user in editing and refining the key
terms into a structured task description. The developer uses this description to create a user task
model and a domain model. Furthermore, the tool guides the developer during the modeling process
and even recommends widgets for each task. The user is able to override these recommendations if
necessary.

The UI Pilot [PMM05], like Mobi-D was developed at Stanford University. It has a similar set of
features, but provides a more advanced tool4 for the

Figure 3.1.: UI Design

modeling process. The approach also focuses on specifying and
manipulating concepts instead of manipulating the widgets of a
user interface. The tool is based on a subset of the eXtensible
Interface Markup Language (XIML)[PE02]. We are going to ex-
plain the XIML language in section 3.2.3. The user interface
design process can be described in three main steps: First, the
designer identifies user tasks that the interface must enable. Sec-
ond, data objects that are to be displayed or captured through
the interface must be identified and third, identifying the vari-
ous user types that the target application will support. Abstract
wireframes are then designed by linking the user tasks to a wireframe. The tool depends on a web
service which recommends widgets for the abstract wireframes. The resulting wireframes can be
exported either as Rich-Text Format document or as XIML document.

Evaluation

Model-based interface designing is a great way to focus on system-centered (Requirement 2) terms
such as tasks, users and objects instead focusing on engineering terms like windows, widgets and
screens. They have the advantage that they eliminate all distracting design choices and concentrate
4https://www.redwhale.com/products/uipilot/about.html

10

3.2. Related Work

on the negotiation of an abstract wireframe. But the design recommendations of the tool follow a
deterministic algorithm and will not be as creative as the design of a usability expert. Model-based
tools rely on powerful models (Requirement 1) in their underlying frameworks. Both approaches are
based on the concept of creating wireframes and the underlying models are hidden from the user
(Requirement 3). While the developers claim that the approach is well suitable for an initial user
interface design specification (Requirement 8), they usually rely on a defined set of user tasks to
start the designing of wireframes. Conclusively it is not possible to define wireframes independent
from other artefacts such as the user tasks or the data objects (Requirement 5). Although they
emphasize end-user involvement and provide different views for the end-user and developer, they do
not distinguish between other professions related to the user interface design process (Requirement
9).

3.2.3. User Interface Description Languages
Over the years, the research community has developed quite a number of different syntax and
semantics to describe the structure and/or behavior of the user interface of a complex software
system. Usually these languages focus on components and their functionality.

Languages

XIML (eXtensible Interface Markup Language) [PE02] is a powerful language to define the
representation and manipulation of interaction data. It has been successfully applied as basis for
software tools such as the UI Pilot.[PMM05] XIML is an XML-based language and includes the
following representational units: components, relations and attributes. Interface elements are cate-
gorized into interface components: user tasks, domain objects, user types, representation elements
and dialog elements. These elements can be linked by a relation. Attributes describe properties or
features of a specific element. Listing 3.1 shows a basic example of the XIML language5, the corre-
sponding sample result can be found in fig. 3.2. Moreover the XIML language claims to supports
multi-platform interface development (Requirement 11).

1 <el eltype="txt" x="23" y="18" datatype="static" dataval="Hello, World!" font="Verdana"
color="0x000000" size="30" />

2 <el eltype="line" x="20" y="60" x2="R-20" y2="60" c="0x000000" a="100" t="1" />
3 <el eltype="rect" x="30" y="75" w="140" h="25" c="0x000000" a="50" r="10" />
4 <el eltype="bord" x="50" y="90" w="170" h="25" c="0x000000" a="50" t="3" r="5" />

Listing 3.1: "XIML Example"

Figure 3.2.: Result of XIML example

5http://ximl.com/

11

3. Requirements and Related Work

UsIXML (USer Interface eXtensible Markup Language) [Lim+05] The USIXML languages
is an XML-compliant mark-up language. Designers specify user interfaces at different levels of
abstraction: Task and Concepts (T&C), Abstract User Interface (AUI), Concrete User Interface
(CUI) and the Final User Interface (FUI). The T&C level is the most abstract level and defines the
user interface in terms of tasks and data objects (classes). At the FUI level, the user interface is
described through code (markup, programming, declarative). In fig. 3.3 a simplified version of the
USXIML model collection is shown. The taskModel describes the tasks the user performs within
the user interface and the corresponding interactions. The description of the classes of data objects
manipulated by a user while interacting with the system is specified in the domainModel. Semantic
relations between models are defined in the mappingModel. The contextModel itself consists of
multiple models: user model, platform model and an environment model. Hence, a user interface
model defined with UsIXML is defined by one or more of the model components described above.

Figure 3.3.: USIXML Model Collection [Lim+05]

Evaluation

User interface description languages are well suitable to describe almost every user interface. Relying
on an XML-based notation is understandable for almost everyone in the software industry. These
languages are extremely expressive (Requirement 1) and flexible, and allow the user to specify the
user interface down to very fine grained design specifications. But such power has its drawbacks: It
suffers from massive complexity, leading to specifications that are not easy to read or to understand
(Requirement 4). The structure of the languages and the concepts behind them forces the user
to think and work like writing code instead of designing the user interface. These lower levels of
abstraction might also lead to slow down the design process and also increase maintenance to keep
the specification up to date. The focus of one integral model makes it harder to reuse existing
documents and integrate well in the software engineering methods (Requirement 7). Although they
claim to provide different views for each level of abstraction of the user interface design, those views
are usually from a development point of view and do not emphasize effective communication between
different professions (Requirement 9).

3.2.4. Shortcomings
As shown above, research in this area has been going on for a long time, but commercial software
developers are still reluctant towards model-based user interface design and user interface descrip-

12

3.2. Related Work

tion languages that offer more than the description of layouts and widgets. When analyzing the
approaches and tools, we found the following: The tools are often stuck in theory without regard
to the application in industry. These approaches are typically hard to learn, understand or imple-
ment in a real world situation. Others simply solved other problems: Classic early interface design
approaches have their place for the use-cases they have been envisioned for, but do not support any
options for specifying more than the visible elements of the user interface and their basic interaction.
We found that The UI Pilot tool and its underlying user interface description language XIML are
the closest fit to the requirements we defined. Nevertheless, they still have weaknesses with respect
to our use-cases that we will try to address in this thesis.

13

4. Wireframe-Driven UI Design
In this chapter we will describe the Wireframe-Driven UI Design approach in detail. We start with
a short overview (section 4.1) of the ideas our approach is based on before diving into a detailed
look on our underlying user interface model (section 4.2). In the following sections we explain our
approach to slice a storyboard (section 4.3) and a dataflow view (section 4.4) of the given model. In
section 4.5 we explain the derivation of our component-oriented architecture proposal. We close with
a set of metrics defined to evaluate and estimate the size and complexity of a given user interface
model (section 4.6).

4.1. Overview

Figure 4.1.: UI Model

Reflecting the previous chapter, model-based approaches offer
great possibilities to represent and interrelate all relevant aspects
of a user interface design. Nevertheless they have their drawbacks
when it comes to effortlessly specifying an initial design. Their
main focus lies on task and domain models, which eliminates or
restricts the creative process of designing a representation for a
user interface design.
In this chapter we are going to introduce our user interface

model that combines the benefits of model-driven approaches and
the concepts of rapid wireframing methods. Our model interre-
lates as series of declarative models: user task model, data model and wireframe model (Requirement
1, Requirement 2), with the wireframes being the foundation of our user interface design model. Our
approach offers domain experts or end-users to specify a user interface in terms of tasks, roles and
domain objects. In parallel, the design expert focuses on finding scenarios and sketching the user
interface. The designer then enhances the wireframe model by the information provided by the
domain expert. This is done by linking tasks and domain objects to the wireframe model as de-
scribed in section 4.2.3. By bringing together the principles of user-centered design approaches and
a developer perspective on a user interface design, we are able to answer key questions, such as:

• What data is represented through a widget?

• How is a wireframe involved in accomplishing a user task?

• What data is involved in representing a wireframe or a certain widget?

Based on this information we can slice a set of views from the given model (Requirement 9): We
offer a storyboard and the dataflow for a given task. Even though our approach does not focus
on code generation, we propose an approach on how to derive a component-oriented architecture
(component tree), based on a given wireframe model. Furthermore, we defined a set of metrics to
assist designers and engineers in the process of estimating the size and complexity of user interface
design (Requirement 10).
Moreover our model enables the designer to specify responsive user interfaces (Requirement 11).

15

4. Wireframe-Driven UI Design

The user interface model can be thought of as a set of wireframes enhanced by the information
given by the domain expert. The approach does not restrict or limit the process of defining the model
and can be easily embedded in most software engineering methods (Requirement 7, Requirement 8).

4.2. User Interface Model
In this section we introduce our user interface model. In doubt, we chose to sacrifice expressiveness
for simplicity, creating a model that works very well for common use cases instead of creating a
more global model that suffers from massive complexity. Figure 4.2 shows the core of the model our
approach is based on. Since an entire user interface model can be very involving when presenting
at the same time, we decided to split the model into three sub-models: task model, data model,
wireframe model. With each sub-model different aspects of the user interface are specified.
To be able to reason about the relations we specified in the class diagram (fig. 4.2) we use the

following notation: For each relation, between two classes A,B we specify two functions. Based on
the multiplicities of the relation, its type is either f : A→ B or f : A→ 2B . Moreover, every class
specifies a set with the same name. For unary functions, let a.f be equal to f(a).

Figure 4.2.: User Interface Model

4.2.1. Task Model
There are a number of methodologies and software tools built for task elicitation and documentation.
To address most of them we defined a simple yet sufficient task model, which focuses on the core
aspects of a task: define steps and assign roles. As seen in fig. 4.2 a task can be defined by steps or
a task itself, so called subtasks. Furthermore a task is defined through a set of ordered steps and
a set of roles. We choose the concept of roles to determine whether a user is allowed to perform a
task or not. As defined by the class diagram, we have the following sets and functions:

roles : Task→ 2Role

16

4.2. User Interface Model

steps : Task→ 2Step

Note that the steps of a task are indexed.

4.2.2. Data Model
As mentioned before, there are multiple ways to define the data model of a system at an early
stage of the development lifecycle. We defined a model which combines the core aspects described
by common methods. This model most resembles the traditional UML class diagram in a typical
lines-and-boxes data diagram. Data objects are specified by their name and attributes. Moreover
two data objects can be connected through an association, which is refined by its multiplicities and
a label.

dataObjects : DataModel→ 2DataObject

4.2.3. Wireframe Model
We designed our user interface model to contain multiple wireframe models, with each wireframe
model grouping a set of wireframes designed for a specific device. A more detailed view on our
wireframe sub-model can be found in appendix D.4.

wireframes : WireframeModel→ 2Wireframe

elements : Wireframe→ 2Element

Wireframe Elements

To describe the elements that can be found in a wireframe, we need a model which satisfies the
needs of everyday user interfaces in terms of windows, widgets and dialogs. Additionally we need
to provide a notation for the concepts provided by common wireframing tools, such as browser win-
dows, phone frames and annotations.

Figure 4.3.: Elements Submodel

Thus, we distinguish between interaction elements and non-
interaction elements. In general everything that is visible on
a screen, e.g. buttons, labels, panels and so on will be referred
to as an interaction element.1 A non-interaction element is an
element that is required for the wireframing process only and will
not be taken into account in the actual implementation, e.g. an
annotation like a sticky note. These elements are usually used to
document additional informations during the wireframing pro-
cess. As the name implies a non-interaction element, in contrast
to an interaction element, cannot trigger interactions. An exam-
ple for an interaction is hovering or clicking on a button, checking
a checkbox and so on. Examples for the different types of each
element category are: Button, iPhone, Sticky Note. Altogether,
our wireframe model provides over 50 different element types to

ensure an equal wireframing experience as given by standard wireframing tools, such as Balsamiq.
1Except the frame element. An example for a frame element is a browser window or a phone. These interaction
elements can have behavour and trigger interactions, e.g. the swipe interaction on a smartphone. Even though
they are interaction elements, they will not be taken into account during implementation.

17

4. Wireframe-Driven UI Design

A full list of the element types provided can be found in appendix A and in the implementation on
the enclosed CD.
During the course of this chapter it is not necessary to describe all elements specified in the

wireframe model; for simplicity we refer to an element as defined below. Moreover, when referring
to an element, we refer to an interaction element unless said otherwise.

parent : Element→Wireframe

Additionally we need the following relations, which are not described in the class diagram:

area : Element→ Area

style : Element→ Style

type : Element→ Type

Interactions

Figure 4.4.: Interaction model

An interaction describes the users communica-
tion with the system. To provide a powerful
interaction concept, we inherited basic concepts
of the interactive sketching notation proposed
by [Jak09], [Lin99] and [LM95]. An interaction
is specified by the attributes listed below:

Set of transitions A transition consists of a
target and a condition. The condition has to be met in order to trigger the transition. All conditions
have to be mutually exclusive.

Trigger Defines whether the transition is triggered by a click, double-click, mouse-over etc. For
different devices there are different triggers, e.g. a multi-touch device can have swipe or zoom.

Duration Defines the approximated time it takes the transition to complete. A good indicator for
the duration time of a transition can be found in the execution time of the operations performed
when the transition is triggered.

Delay Defines the time it takes to start the transition. The delay is meant to cover usability and
design aspects of a user interaction.

Effect Defines the effect of the transition, for example slide or fade-in. The effects are comparable
to an HTML5 canvas animation2 for example.

As described in fig. 4.2, an interaction is triggered by an element in a wireframe. This can be
represented by the following relation.

interactions : Element→ 2Interaction

source : Interaction→ Element

2http://slides.html5rocks.com

18

4.2. User Interface Model

Furthermore, an interaction consists of a set of transitions, with each transition having a condition
and referring to a target wireframe:

transitions : Interaction→ 2Transition

condition : Transition→ Condition

target : Transition→Wireframe

To bridge the gap between the wireframe model and the data model we introduced the concept of
operations. An operation, as the name implies, describes a systems internal operation which will
be performed when an interaction has been triggered. We focused on the standard CRUD (create,
read, update, delete) operations. Moreover, we specified a single transition of an interaction to
trigger multiple operations. In order to interrelate a set of operations to an interaction we defined
the following relation 3:

Type = {CREATE ,READ ,UPDATE ,DELETE}

type : Operation→ Type

dataObject : Operation→ DataObject

operations : Transition→ Operation

Furthermore read operations can be triggered by an element itself. This would be comparable to an
element observing a data object and can be defined as the following relation:

dataObject : Element→ DataObject

Analog to the relation between a wireframe model and a data model, we need to define the relation
between a wireframe model and a given task model. This can be done by describing the relation
between the step of a task to an interaction.

steps : Interaction→ 2Step

interaction : Step→ Interaction

4.2.4. Example
In the following sections we to introduce a simple app called "my to-do app" to explain our approach.
The "my to-do app" allows the user to login and create and maintain to-dos. In the following sections
we are going to specify the model for the "my to-do app":

Task Model

Even though we could easily think of more than one task for an app like this, through the course of
this example we will focus on adding a new to-do to the list:

taskaddTodo .steps = {steplogin , stepcreateNewTodo , stepsaveTodo}

steplogin = "Enter username, password and click the login button"

stepcreateNewTodo = "Click on the create button"

stepsaveTodo = "Enter name, date and click on the save button"

We do not distinguish between different user roles: taskaddTodo .roles={User}.
3We define the operations of the relation transition.operations to be ordered.

19

4. Wireframe-Driven UI Design

Data Model

The dataModel , showing the apps data and their relations:

dataModel .datatobjects = {user , todoList , todo}

In this example we focused on the data objects and did not specify any relations between them.

Wireframe Model

Our wireframe model consist of three wireframes: wireframelogin showing the state of the system
when starting the app (fig. 4.5, A). And wireframetodoList (B) showing the users’ to-do list. The last
wireframe wireframenewTodo (C) displays the form to enter a new to-do. Although each wireframe
consists of multiple elements (fig. 4.5), during the course of this example we are not going to specify
all of them. Last, we define three simple interactions according to the steps in taskaddTodo . The

Figure 4.5.: my to-do app - wireframes

first interaction describes how the user logs into the "my to-do app" by clicking the login button in
wireframelogin (fig. 4.5, 1).

interactionclickLogin .source = loginBtn ∧ loginBtn ∈ wireframelogin .elements

interactionclickLogin .transitions = {transitionlogin}

transitionlogin .target = {wireframetodoList}

transitionlogin .condition = "username and password valid"

In order to verify the users’ identity and show the list of to-dos we need to define the following to
operations:

transitionlogin .operations = {operationgetUser , operationgetList}

operationgetUser .dataObject = User , operationgetUser .type = READ

operationgetList .dataObject = TodoList , operationgetList .type = READ

We describe the reference to the first step of our task as:

interactionclickLogin .steps = {steplogin}

20

4.2. User Interface Model

The second interaction is defined, so that the user will switch from (B) to (C) when clicking on the
"new" button:

interactionclickNew .source = newBtn ∧ newBtn ∈ wireframelogin .elements

interactionclickNew .transitions = {transitionnew}

transitionnew .target = {wireframenewTodo}

transitionnew .condition = TRUE

Furthermore, the reference to the second step id defined by:

interactionclickNew .steps = {stepcreateNewTodo}

Lastly the user enters a name and time for the to-do in the form and saves the new to-do:

interactionsaveTodo .source = saveBtn ∧ saveBtn ∈ wireframelogin .elements

interactionsaveTodo .transitions = {transitionsave , transitioncouldNotSave}

If the input is valid the system will create a new to-do and update the to-do list:

transitionsave .target = {wireframetodoList}

transitionsave .condition = "input valid"

transitionsave .operations = {operationcreateTodo , operationupdateList}

operationcreateTodo .dataObject = Todo, operationcreateTodo .type = CREATE

operationupdateList .dataObject = TodoList , operationupdateList .type = UPDATE

Otherwise the system will stay on the same screen and not perform any operations:

transitioncouldNotSave .target = {wireframenewTodo}

transitioncouldNotSave .condition = "input invalid"

This interaction belongs to the interaction described in step three:

interactionsaveTodo .steps = {stepsaveTodo}

21

4. Wireframe-Driven UI Design

4.3. Storyboard View
In this section we propose an approach to slice a storyboard from the information provided by
the taskmodel and a wireframe model. A storyboard is a view on the UI design used to describe
the system users’ behavior during a single task. In the previous section we introduce the user
interface model (section 4.2) and defined a relation between interactions and steps. Based on this
information, we are able to derive a storyboard for each task. We start by providing a definition of
the terms storyboard, keyframe and action. We explain the derivation of the storyboards and the
information it depends on (section 4.3.3). We close with the storyboard sliced from the "my to-do
app" introduced in the previous section (section 4.2.4).

4.3.1. Definition
The storyboard illustrates the important steps of the user experience based on a task. The structure
of a storyboard as described in section 2.2.1 consist of two main parts: keyframes and action, with
keyframes connected through actions. In our case, a storyboard is determined by a directed rooted
graph of transitions that belong to the same task, which is specified by the relation we described in
section 4.2.3: interaction : Step→ Interaction
In the context of the storyboard view, we define the nodes of the storyboard graph as wireframes,

which are connected through transitions:

Keyframe ⊆Wireframe

Action ⊆ Transition

connects : Keyframe× Keyframe→ Action

Figure 4.6.: Storyboard Submodel

4.3.2. Approach
For each task in a given task model we build a storyboard as described below:

22

4.3. Storyboard View

Defining the nodes

Let the set of keyframes of a storyboard keyframes : Storyboard → Keyframe of a given task be
defined as:

Storyboard .keyframes = {interaction.source, transition.target|
∃step ∈ task.steps

∧ interaction = step.interaction

∧ transition ∈ interaction.transitions}

Building the storyboard

Algorithm 1 determines the connects : Keyframe × Keyframe → Action relation, in order to build
the storyboard graph.

Algorithm 1: Defining the actions
Input: Task task

1 begin
2 foreach step in task .steps do
3 interaction = step.interaction;
4 foreach transition in interaction do
5 connects(interaction.source.parent , transition.target) = transition
6 end
7 end
8 end

Invalid Storyboards

In case the user specifies and unconnected storyboard, the resulting graph will also be unconnected
and the storyboard will be invalid. For example:

interaction1 .transitions = {transition1}, interaction1 .source = w1

transition1 .target = w2

interaction2 .transitions = {transition2}, interaction2 .source = w3

transition2 .target = w4

step1 .interaction = interaction1 , step2 .interaction = interaction2

The resulting output can be seen below:

w1 w2 w3 w4
t1 t2

23

4. Wireframe-Driven UI Design

4.3.3. Equality
As described above (section 4.3.1) the storyboard of a task depends on the steps : Interaction →
2Step relation and the transitions of the interactions that belong to a task. By construction, it is
independent from the operations linked to its interactions. Two storyboards of a given task are equal
if they refer to the same graph (section 4.3.1). They are invariant against changes to the wireframes,
as long as no interactions are edited.

4.3.4. Example
In the previous section (4.2.4) we introduced the "my to-do app" and specified its user interface
model. The keyframes, and their relations for taskaddTodo can be seen below:

Keyframes = Wireframes

Actions = Transitions

connects(wireframelogin ,wireframetodoList) = transitionlogin

connects(wireframetodoList ,wireframenewTodo) = transitionnew

connects(wireframenewTodo ,wireframetodoList) = transitionsave

connects(wireframenewTodo ,wireframenewTodo) = transitioncouldNotSave

The resulting transition graph can be seen below:
w1 = wireframelogin ,w2 = wireframetodoList ,w3 = wireframenewTodo

t1 = transitionlogin , t2 = transitionnew , t3 = transitionsave , t4 = transitioncouldNotSave

start w1 w2 w3
t1

t2

t3

t4

24

4.4. Dataflow View

4.4. Dataflow View
The behavior of a defined task can be described as a data flow diagram. We choose to describe
our dataflow diagram as a simplified UML sequence diagram. Nevertheless, it does not substitute a
proper sequence diagram, neither is it sufficient for implementation. This dataflow diagram should
be used by engineers and architects to get an overview of the data flow described by the wireframes,
without looking at the wireframes and tasks itself. In section 4.4.1 we introduce a basic vocabulary
for this section used to explain our approach (section 4.4.2). Last, we show the derived data flow
diagram for the "my to-do app" (section 4.4.4).

4.4.1. Definition

Our data flow diagram captures the behavior of a single task. The data diagram shows a number
of data objects and the operations that are passed between those objects. In terms of the data flow
diagram section, we will refer to the set of sample objects as participants. The set of operations
passed between them will be described as methods.

Participant ⊆ DataObject ∪ {USER,SYSTEM }

source : Method→ Participant

target : Method→ Participant

Figure 4.7.: Dataflow Submodel

4.4.2. Approach

As mentioned before, a data flow diagram is defined by participants and methods. This section gives
a broad overview on the approach we used to define the participants and methods of a given task.

25

4. Wireframe-Driven UI Design

Defining the Participants

The following equation specifies how we derive the participants of a data flow diagram participants :
FlowDiagram→ Participant that belong to a particular task :

dataflow .participants = {p|∃step,∈ task.steps

∧ interaction = steps.interaction

∧ transition ∈ interaction.transitions

∧ p = transition.dataObject} ∪ {USER,SY STEM}

Defining the methods

Algorithm 2 defines an ordered set of methods4 which are passed between the participants in a data
flow diagram based on a given task .

Algorithm 2: Defining the methods of the data flow diagram
Input: Task task

1 begin
2 foreach step in task .steps do
3 interaction = step.interaction;
4 Let method be a new method;
5 method .source = USER;
6 method .target = SYSTEM ;
7 Method = Method ∪method ;
8 foreach transition in interaction.transitions do

// create new alternative for each transition, with the transitions condition as
alternative condition

9 foreach operation in transition.operations do
10 Let method be a new method;
11 method .source = SYSTEM ;
12 method .target = operation.dataObject ;
13 Method = Method ∪method ;
14 end
15 end
16 end
17 end

4.4.3. Equality
The data flow diagram of a given task depends on the interactions, transitions and operations linked
to steps of the task. By construction dataflow models are invariant against changes to the wireframes,
as long as no interactions and their corresponding operations are edited.

4Note that the order of the methods can be derived from the indexed steps.

26

4.4. Dataflow View

4.4.4. Example
Figure 4.8 shows the dataflow diagram derived from the "my to-do app" model. To improve the
understandability, we visualized the data flow diagram in an UML sequence diagram style.

Figure 4.8.: my to-do app - dataflow

27

4. Wireframe-Driven UI Design

4.5. Architecture View
As introduced in section 2.3 we are applying hierarchical decomposition onto wireframes, using in
particular the Model View Controller / Component Tree (MVC/CT) architecture pattern proposed
by [Engb]. After giving a brief definition of the terms component and component tree (section 4.5.1)
we explain our approach and the assumptions we made in detail (section 4.5.2). A detailed introduc-
tion to user interface decomposition and the (MVC/CT) can be found in [Vaa]. We close this section
with the component tree of the "my to-do app" (section 4.5.4). All algorithms proposed in this
section are valid for a user interface model with exactly one wireframe model. A brief explanation
on how to handle responsive user interfaces can be found in chapter 7.

4.5.1. Definition
A component tree describes the architecture of a UI as a hierarchical structure of components.
We define the component tree to consists of components, which are either composite-components
or widget-components (see fig. 4.9). A widget-component, as the name implies, groups a set of
widgets, here interaction-elements to a component. A composite-component can be thought of as
an orchestration panel that logically groups a set of widget-components.

WidgetComponent ⊆ 22
Element

Figure 4.9.: Component Tree Submodel

4.5.2. Approach
This section explains the approach used to derive the component tree in detail. Our goal is to group
the elements of a wireframe model to widget-components, as defined above (section 4.5.1). In order
to do so, we made a few assumptions, based on best practices when modularizing a UI Design:

• Elements in different wireframes which are similar in size, position, style, etc. are most likely
to represent the same element. We call these elements shared elements.

• Wireframes which have no shared elements visualize different views in an application, e.g.
login and home screen of an application. Wireframes which share a lot of similar elements are
most likely to represent one view of the application.

28

4.5. Architecture View

• Elements which are shared by most wireframes are usually ubiquitous elements in the appli-
cation, e.g. the buttons in a header or footer of the application.

• Elements are grouped to widget-components, so that no two components in one wireframe
visually overlap.

Based on these assumptions, the generation of a component tree of a single wireframe model can be
summarized in three simple steps:

1. Pre-processing of the wireframes to be able to compare the wireframes to each other

2. Finding elements that are similar in multiple wireframes and representing the wireframes and
their similar elements as a graph

3. Grouping elements to widget-components and building the component tree by decomposing
the graph

In the following sections we are going to explain those steps in detail.

Pre-processing

Even though the component tree relies heavily on the wireframe model, we still need to preprocess
the wireframes to remove unnecessary information. Wireframes of a given wireframe model are taken
into account, according to the following constraints:

• WoneFrame = set of wireframes with exactly one frame 5

• WnotEmpty = set of all wireframes with at least one interaction-element inside the frame

Furthermore, we are focusing on elements, that fulfill the following constraints:

• EinsideFrame = set of elements that are inside the frame

• EinteractionElement = set of elements from type interaction-element

• EnotFrame = set of elements other from type frame

Let the set of Wireframes and Elements be:

Wireframes = woneFrame ∩ wnotEmpty

Elements = einsideFrame ∩ einteractionElement ∩ enotFrame

The next step of the pre-processing groups nested or overlapping elements and defines them as one
single group element.6

Although there may be interactions specified in the wireframe model, by construction the deriva-
tion of the component tree is independent from interactions, as well as the operations and steps
linked to them (see fig. 4.9).

5As mentioned before, a frame is an element, e.g. phone or browser window, used to improve understanding during
the wireframe process.

6Note that, by construction, no two elements of a single wireframe overlap after the pre-processing step.

29

4. Wireframe-Driven UI Design

Finding shared elements

A wireframe can be thought of as a canvas holding all elements necessary to describe the state
of a user interface. The designer can position and scale the frame and its elements freely in each
wireframe. We refer to the size and position of an element as the size and position relative to its
frame.
When creating wireframes, the designer usually sketches similar elements multiple times, for ex-

ample the buttons in the header of an application. The challenge is to identify these elements across
different wireframes. As there is no global definition of similar elements, we defined a basic defini-
tion of similarity which has to be adapted for every type of element7. Necessary but not sufficient
conditions for two elements e1 , e2 ∈ Wireframes ∧ e1 .parent 6= e2 .parent to be similar (x ∼elem y)
are:

• e1 .area = e2 .area

• e1 .style = e2 .style

• e1 .type = e2 .type

Generating the shared elements graph

For further processing, we describe the relation between wireframes and similar elements with the
help of a pseudo-graph. A pseudo-graph is a graph which is permitted to have multiple edges, edges
with the same source and target nodes. Additionally it is allowed to have multiple loops on the same
node. Formally, our shared element pseudo-graph G is an ordered pair G = (V,A) with:

• V=set of vertices = WoneFrame ∪WnotEmpty

• A= a multiset of unordered pairs of vertices, so called arcs, in this case, two nodes are connected
via one or more arcs if they share one or more elements8. To define A we use the following
algorithm:

Algorithm 3: Defining the set of arcs
Data: SharedElements = Elements\ ∼elem

1 begin
2 foreach sharedElement in SharedElements do
3 if sharedElement={e} then
4 A = A ∪ (e.parent , e.parent , sharedElement)
5 else
6 foreach e1 , e2 in sharedElement do
7 if e1 6= e2 then
8 A = A ∪ (e1 .parent , e2 .parent , sharedElement)
9 end

10 end
11 end
12 end
13 end

7For details see the source code on the enclosed CD.
8Two wireframes w1 ,w2 share the same elements e1 , e2 if e1 ∼elem e2 ∧ e1 ∈ w1 and e2 ∈ w2 .

30

4.5. Architecture View

Decomposing the shared-elements graph

The shared elements graph G gives an overview of the number of shared elements in a wireframe
model. A strongly connected graph determines that we have less widget-components and the wire-
frames are mostly compositions of these components. The resulting component tree will have a
small depth with less composite-widgets and proportionally more widget-components. If we have a
large number of unconnected sub-graphs, we are going to have more widget-components and each
wireframe in the model shows different elements. The resulting component tree architecture has a
greater depth and more composite-components.
During the decomposition of the graph, we are going to remove edges of the graph. The basic idea
behind the decomposition is to identify elements which are shared by most or all of the wireframes
and group them to widget-components.
The following recursive algorithm 4 shows how we are going to decompose the graph and reduce
the number of edges in every iteration. Definitions on bi-connectivity and cut points used in the
algorithm can be found in [Gro04].

Grouping elements to widget-components

As described in section 2.3 our goal is to achieve maximum reusability of components without suf-
fering from disproportional complexity. The following equation describes in detail how we group
elements to widget-components, based on the assumption we made before (section 4.5.2): No two
components in the same wireframe are allowed to intersect.

Let intersects(area1 , area2) determines whether or not area1 and area2 intersect.
getBoundingBox (component), be the bounding box of the elements in component .

components = {c|c ⊆ candidates ∧ ∀otherElem ∈ otherElements

¬intersects(otherElem.area, getBoundingBox(c))

∧ ∀otherComp ∈ otherComponents

¬intersects(getBoundingBox(otherComp), getBoundingBox(c))

∧ |c| is maximum}

4.5.3. Equality
In fig. 4.9 we can see that the component tree is independent from the task model and the data
model. Moreover, by construction, our component tree is invariant against the following: all wire-
frames that can be built by compositions of elements of other wireframes do not affect the derived
component tree. For example, adding or removing copies of the same wireframe in one model does
not change the resulting component tree. Formally, we define the following equality relation: Let
Gi be the shared-elements-graph of wireframeModeli as described in section 4.5.2. Let ∼graph be
defined as:

G1 = 〈V1 ,A1 〉 ∼graph G2 = 〈V2 ,A2 〉 ⇔ ∀v ∈ V2\V1 .∃S ⊆ V1 .elements({v}) ∼elemSet elements(S)

Let elements(v) be the solution to the following:

{e|∃v2 , elements.e ∈ elements ∧ (v , v2 , elements) ∈ A}

Let elements({v1 ,, vn}) be the solution to the following:⋃
elements(vi) ∧ 1 ≤ i ≤ n

31

4. Wireframe-Driven UI Design

Let A,B sets of elements,

A ∼elemSet B ⇔ ∃a ∈ A ∧ b ∈ B .a ∼elem b

By construction, we can see that:

Tree(G1) = Tree(G2)⇔ G1 ∼graph G2

4.5.4. Example
In the following we are going to explain our algorithms step by steps with the "my to-do app"
example.

Pre-processing

After the pre-processing step, we are left with 10 non intersecting elements (seefig. 4.10).

Figure 4.10.: "my to-do app" - after pre-processing

Finding shared elements

We can see that e3 ∼elem e7 ∧ e4 ∼elem e8. The similarity definition does not apply to any other
elements in the given wireframes.

Decomposing the Graph and Building Components

Based on the shared elements we found, we can define the sets Elements and SharedElements as
followed:

Elements = {e1 , e2 , e3 , e4 , e5 , e6 , e7 , e8 , e9 , e10}

SharedElements = {{e1}, {e2}, {e3 , e7}, {e4 , e8}, {e9}, {e10}}

The initial shared-elements-graph G1 we build based on the infoemtaion of the shared elements is
unconnected (see Iteration: 1). To be able to derive the component tree, the algorithm to decompose

32

4.5. Architecture View

the graph (see) is called with G1 and the ROOT composite component. In the following, we explain
in detail how our algorithm works. Each iteration shows the input graph on the right hand side.
On the left hand side we refere to the line numbers of the decompose graph algorithm and provide
detailed information on the intermediate results.

Iteration: 1
line 21: G1 is unconnected.
line 22: Subgraphs = {G11 ,G22}
line 25-26: decomposeGraph(G11 ,ROOT)

(see Iteration 1.1)
line 24-29: CComponents = {ROOT ,Comp}

parent(Comp) = ROOT ,
decomposeGraph(G12 ,Comp)
(see Iteration 1.2)

v1 v2 v3

{e1}

{e2}

{e3, e7}

{e4, e8}
{e5}

{e6}

{e9}

{e10}

Iteration: 1.1
line 5: G11 has only loop edges
line 6: v1
line 7-10: buildComponents({{e1}, {e2}}, ∅, ∅)
line 11: WComponents = {Login}

Login = {{e1},
{e2}}, parent(Login) = ROOT

v1

{e1}

{e2}

Iteration: 1.2
line 27-28: CComponents = {ROOT ,Comp},

parent(Comp) = ROOT
line 29: decomposeGraph(G12 ,Comp)

(see iteration 1.2.1)

v2 v3{e3, e7}

{e4, e8}
{e5}

{e6}

{e9}

{e10}

Iteration: 1.2.1
line 18: G121 is connected
line 19: Gsplit = splitGraph(G12)

gE = {{e4 , e8}, {e3 , e7}}
oE = {{e5}, {e6}, {e9}, {e10}}
buildComponents(gE , oE , ∅)
WComponents = {Login,Header}
Header = {{e4 , e8}, {e3 , e7}},
parent(Header) = Comp

line 20: decomposeGraph(Gsplit ,Comp)
(see Iteration 1.2.1.1)

v2 v3{e3, e7}

{e4, e8}
{e5}

{e6}

{e9}

{e10}

33

4. Wireframe-Driven UI Design

Iteration: 1.2.1.1
line 5: G1211 has only loop edges
line 6: v2
line 7-10: buildComponents({{e5}, {e6}}, ∅, {Header})
line 11: WComponents = {Login,Header ,TodoList}

TodoList = {{e5}, {e6}},
parent(TodoList) = Comp

line 6: v3
line 7-10: buildComponents({{e9}, {e10}}, ∅, {Header})
line 11: WComponents = {Login,Header ,TodoList ,NewTodo}

TodoList = {{e9}, {e10}},
parent(TodoList) = Comp

v2 v3

{e5}

{e6}

{e9}

{e10}

Building the component tree

The resulting component tree (see fig. 4.11) consists of composite − component = {ROOT ,Comp}
and widget − components = {Login,Header ,TodoList ,NewTodo}.

Figure 4.11.: my to-do app - Component Tree

34

4.6. Evaluation of UI Designs

4.6. Evaluation of UI Designs
In this section, we present a set of metrics to analyze and evaluate a user interface design according
to its size and complexity. Other than the heuristic evaluation of a user interface [Nie94], we focus
on the illustration of the impact on software construction and the overall development process. With
these metrics we can assure that all tasks and data objects are embodied in the user interface design
and visualized through one or more wireframes.

Components overview per Task This overview enables the developer to make more knowledge-
able decisions and gain better insight into the effect each interface element, or the component
has on a given task.

Data overview per task Providing an overview of the data objects created, read, updated or
deleted during a task can assist the developer when estimating the cost and complexity when
implementing a task related feature.

Usage overview Determines whether a data object specified in the domain model, is created, read,
updated or deleted. It enables the developer to quickly identify unused data objects during
the designing process.

Access Overview By listing the roles related to the operations they are able to perform in a given
design, the developer can immediately identifying any permission violations.

Components per wireframe Estimating size and complexity is an ongoing issue in all software
engineering methods. Providing extended feedback on the components used to implement a
certain wireframe can assist during this process.

Observed data objects per wireframe Giving an overview of the elements that observe one or
more data objects in allows the developer to estimate the complexity of a sketched wireframes.
Wireframes that do not contain elements that trigger interactions which perform or observe
data objects cost less time and resources during implementation.

Reusability of widget-components Highly reusable components are desirable, they reduce the
overall lines of code and improve maintainability. Having a continuous feedback on the usage of
the generated components facilitates cost and complexity estimation of a user interface design.

4.6.1. Example
Based on the views we derived in the previous sections, we can calculate the following metrics for
our example app, the "my to-do app".

Data overview for: taskaddTodo

Data Object CREATE READ UPDATE DELETE
user 0 1 0 0
todoList 0 1 1 0
todo 1 0 0 0

Component overview for: taskaddTodo

Composite-components ROOT
Widget-Components Login,Header, TodoList,NewTodo

35

4. Wireframe-Driven UI Design

Usage Overview
Unused ∅
Unchanged user

Access Overview
Role user todoList todo
user READ READ ,UPDATE CREATE

Number of component per wireframe
Wireframe Components
wireframelogin Login
wireframetodoList Header ,TodoList
wireframenewTodo Header ,NewTodo

Observed data objects per wireframe
Wireframe Data Objects
wireframelogin ∅
wireframetodoList ∅
wireframenewTodo ∅

Reusability of widget-components
Component Used abs. Used perc.
Login 1 0.25
Header 2 0.5
TodoList 1 0.25
NewTodo 1 0.25

36

4.6. Evaluation of UI Designs

Algorithm 4: Decompose shared-elements-graph
Input: Shared elements graph G = (V ,A), current parent node parentComponent
Data: getElements(v1 , ..., vn)=

⋃
{elements | ∀1 ≤ i , j ≤ n. 〈vi , vj , elements〉 ∈ A}

WComponents is the set of widget-components, which are defined as a subset of
SharedElements.

CComponents is the set of composite-components, identified by markers.
parent : (Components ∪ CComponents)→ CComponents, initially empty
getComponents(v1 , ..., vn) = {component | ∀elements ∈ component .

component ∈WComponents ∧ elements ∈ getElements(v1 , ..., vn)}
1 begin
2 if A = ∅ then
3 return;
4 end
5 if ∀〈v1 , v2 , elements〉 ∈ A. v1 = v2 then

// graph has only loop edges
6 foreach v in V do

// build widget component for each vertex
7 componentCandidates = {e|e = A(v , v)};
8 otherElements = ∅;
9 otherComponents = getComponents(v);

10 components = buildComponents(componentCandidates, otherElements,
otherComponents);
// add components to set of widget components

11 WComponents = components ∪WComponents;
12 foreach c in components do

// set parent for each component
13 parent(c) = parentComponent ;
14 end
15 end
16 return;
17 end
18 if G is connected then
19 G = splitGraph(G , parentComponent);
20 decomposeGraph(G , parentComponent);
21 else
22 Subgraphs = set of connected components;
23 foreach Gs = (Vs ,As) in Subgraphs do
24 if |Vs | = 1 then

// graph has only loop edges
25 decomposeGraph(Gs , parentComponent);
26 else

// create new composite-component composite with a new marker
27 CComponents = CComponents ∪ {composite};
28 parent(composite) = parentComponent ;
29 decomposeGraph(G , composite);
30 end
31 end
32 end
33 end

37

4. Wireframe-Driven UI Design

Algorithm 5: Split Graph
Input: Shared elements graph G = (V ,A), current parent node parentComponent
Output: Shared-elements-graph G = (V ,A)

1 begin
// let global elements be the set of elements that all wireframes share

2 globalElements={e|∀v1 , v2 ∈ V .e ∈ A(v1 , v2)};
3 otherElements = getElements(V) \ globalElements;
4 otherComponents = getAllComponents(V);
5 components = buildComponents(globalElements, otherElements, otherComponents);

// add components to set of widget components
6 WComponents = components ∪WComponents;
7 foreach c in components do

// set parent for each component
8 parent(c) = parentComponent ;
9 end

// remove cutpoint elements from Graph
10 A= A \ {〈v1 , v2 , elements〉 | 〈v11 , v2 , elements〉 ∈ A ∧ elements ∈ globalElements};
11 if G is connected then
12 if G is biconnected then

// no heuristic for further decomposition
13 component = getElements(V);
14 WComponents = component ∪WComponents;
15 parent(component) = parentComponent ;
16 A = ∅;
17 return G ;
18 else
19 cutpoints = set of cut points of G ;

// Let cutpointElements be the set of all elements between all cut points
20 cutpointElements =⋃

{elements|∀v1 , v2 ∈ cutpoints.(A(v1 , v2) = elements ∧ v1 6= v2)};
// build widget components by cut point elements

21 vertices = {v |∃〈v , v1 , elements〉 ∈ A. elements ∈ cutpointElements}
otherElements = getElements(vertices);

22 otherComponents = getComponents(vertices);
23 components = buildComponents(cutpointElements, otherElements,

otherComponents);
// add components to set of widget components

24 WComponents = components ∪WComponents;
25 foreach c in components do

// set parent for each component
26 parent(c) = parentComponent ;
27 end

// remove cut point elements from Graph
28 A= A \ {〈v1 , v2 , elements〉 | 〈v11 , v2 , elements〉 ∈ A ∧ elements ∈ cutpointElements};
29 return G ;
30 end
31 end
32 return G ;
33 end

38

5. Tool: Wireframe2Artefact
In this section, we present Wireframe2Artefact, a model-based software tool that supports user inter-
face design. We start with a brief overview of the design principles our tool is based on (section 5.1).
Then we introduce the XML-based underlying meta-level modelling languages (section 5.2). This
is followed by a detailed explanation of the features provided by Wireframe2Artefact (section 5.3).
Next we give a brief overview of the architecture of the tool and used technologies (section 5.4). In
the last section we summarize the current limitations (section 5.5).

5.1. Overview
Wireframe2Artefact is a software tool that allows the designer to represent all relevant aspects of a
user interface by capturing the relation between wireframes, the user tasks and its data objects.
A central activity of any user interface design is the specification of a user task model. It requires

close collaboration between domain experts, interface designers and engineers. Wireframe2Artefact
involves the end user directly in the development of the user interface design model. The user
describes the task, in terms of tasks, steps and roles. The designer then identifies key interactions
and connects the task model to the wireframe model by refining the interactions. Wireframe2Artefact
is then able to generate storyboards for each task. These storyboards can be used to communicate
and evaluate requirements and help to reduce the chance of misunderstood requirements. The user
can visualize how each interaction relates to a task.
In parallel, a data model has can be specified and linked to the wireframe model, by adding

operations that are triggered by an interaction. Wireframe2Artefact is then able to generate a data
flow diagram for each task specified in the task model. These simple connections help the developer
to identify what data objects are represented through a certain element in a wireframe.
Based on the wireframe model, Wireframa2Artefact provides an educated guess on the frontend

architecture by deriving a component tree. Our tool does not emphasize the generation of code,
but the complete user interface design is available in a declarative form and can be reused in other
applications to do so.
The clear connection between representation of the user interface, the user tasks and the data

model, makes it easy to track the way the design relates to the constructed interface model. The
user does not need to know the structure of our XML-based underlying modelling language in order
to use our tool. We provide a low barrier of entry and an open environment that allows to cooperate
with existing tools in the industry.

5.2. User Interface DSL
In this section we introduce our XML-based user interface modelling language, based on the model
we proposed in section 4.2. To support reuse (Requirement 5, Requirement 6) of the artefacts
specified for the user interface model, we decided to split the user interface language into three
connected languages:

39

5. Tool: Wireframe2Artefact

• WXML (Wireframe eXtensible Markup Language), to specify the wireframes, interactions and
operations

• TXML (Task eXtensible Markup Language), to specify the tasks, steps and roles

• DXML (Data eXtensible Markup Language), to specify data objects and their associations

The schema for our languages is defined in RELAX NG (REgular LAnguage for XML Next Genera-
tion) 1, a schema language for XML. An example of the schema definition of a button in a wireframe
can be found in 5.1.

1 button-elem = element button {
2 BasicInteractionElement,
3 attribute pointy {direction-attr}?,
4 attribute switch {"on" | "off"}?,
5 attribute selectedState {selectedState-attr},
6 menu-elem?,
7 label-elem?
8 }

Listing 5.1: "RELAX NG Button schema"

With the help of trang2, a multi-format schema converter based on RELAX NG, we converted our
RELAX NG schema into an XML schema. This can be done with a simple command line call
(listing 5.2).

1 java −jar trang.jar foo.rnc > bar.xsd

Listing 5.2: "Trang command line call"

Trang aims to preserve all aspects of the schema that may be significant to a human reader, listing 5.3
shows an example of the converted schema snippet we introduced before (listing 5.1).

1 <xs:element name="button">
2 <xs:complexType>
3 <xs:complexContent>
4 <xs:extension base="BasicInteractionElement">
5 <xs:sequence>
6 <xs:element minOccurs="0" ref="menu"/>
7 <xs:element minOccurs="0" ref="label"/>
8 </xs:sequence>
9 <xs:attribute name="pointy" type="direction-attr"/>

10 <xs:attribute name="switch">
11 <xs:simpleType>
12 <xs:restriction base="xs:token">
13 <xs:enumeration value="on"/>
14 <xs:enumeration value="off"/>
15 </xs:restriction>
16 </xs:simpleType>
17 </xs:attribute>
18 <xs:attribute name="selectedState" use="required" type="selectedState-attr"/>
19 </xs:extension>
20 </xs:complexContent>
21 </xs:complexType>
22 </xs:element>

Listing 5.3: "XSD Button schema"

1http://relaxng.org/
2https://code.google.com/p/jing-trang/

40

5.3. Features

Analog to the XML schema, we defined schemas for the task model (TXML) and the data model
(DXML). All schemas have been implemented as described in section 4.2.

5.3. Features
Wireframe2Artefact offers a limited, but yet sufficient set of features to design a user interface and
capture the interrelation between the specified models. It offers a separate view for each model
in order to sufficiently represent all information. The following sections give an overview of the
currently implemented features of Wireframe2Artefact:

Load Models
Our reference tool does not offer the possibility to specify the input models within the tool. The
user starts the design process by loading a set of data. He is allowed to load the following:

• mandatory: a set of BMML files or a single WXML file to specify the wireframe model

• recommended: a TASKXML file to specify the task model

• recommended: a DATAXML file to define the data model

Afterwards the files are read, converted to our underlying user interface model and post-processed
(for further details see section 5.4) by the system.

Model Views
For better intelligibility and a clear distinction between the concepts: wireframes, tasks and data
objects, a tab for each sub-model is provided by Wireframe2Artefact:

Wireframe Model Tab (fig. 5.1) Finding a suitable and self-descriptive visualization for the
wireframe model was one of the obstacles we had to overcome. The wireframe model shows the
state of a system, while at the same time describes the users’ interaction with the system. As
mentioned before, most wireframeing tools, such as Balsamiq and WireframeSketcher offer the user
the possibility to define these interactions, but provide no features to visualize the connections
between the wireframes within their tool. We solved this problem by displaying the wireframe
model as a so called "navigation map" (a). The navigation map is a directed graph, with each
wireframe represented as a node in the navigation map. An edge is described by an interaction
triggered by an element in a wireframe. The source of the edge is defined by the parent of the source
element. The target is defined by the interactions target wireframe. By clicking on an edge, our
tool provides detailed information on the interaction (b), such as trigger, duration, delay and effect.
When selecting a node, detailed information of the selected wireframe is shown (c).3

Task Model Tab (fig. B.2) End-users or domain experts typically have no background in modelling
languages and aim to describe and read a task as informal as possible. Our task tab collects all
specified task in a list, by selecting a task, detailed information, such as name, description, steps
and roles are displayed.
3Note that it is only possible to display the images of a wireframe when the images has been uploaded with the
model. Furthermore, they have to have the same file name as the corresponding BMML file. Using Balsamiq this
can be done by the "export all Mockups to PNG" feature.

41

5. Tool: Wireframe2Artefact

Figure 5.1.: Screenshot of the wireframe model tab

Data Model Tab (fig. B.3) One of our requirements was to hide the model from the user in order
to avoid being slowed down by modelling details. Hence, we choose a simplified UML class diagram
notation to visualize our data model. This way we ensure self-descriptiveness and a low barrier of
entry as claimed in the requirements section (Requirement 3, Requirement 4).

Refine interactions

Reflecting the previous chapters, we defined the wireframe model as the foundation of our approach.
In order to define the user interface design the designer links the user tasks and the data objects to
the wireframe model by refining the transitions of the wireframe model. Both can be done in the
wireframe tab of our tool. To add an operation to an interaction, the user clicks on the ’+’ button
above the operation table (fig. 5.1, a). He then chooses an operation type (CRUD) and a data object
(as defined in the data model) from a combobox.
Our implementation is currently limited to one transition per interaction; hence the user refines

interactions instead of transitions. The user can add and remove steps that belong to an interaction.
Furthermore, the user is able to add and remove operations that are triggered by an interaction.

Generate Views

Wireframe2Artefact offers a tab for each view that can be generated: Storyboards, data flow dia-
grams and component tree. Using the toolbar in each tab, the user can generate the desired view.
A screenshot of each view can be found in fig. B.4, fig. B.5 and fig. B.6.

42

5.4. Architecture

5.4. Architecture
Wireframe2Artefact is implemented in JavaFx. The core of the system consists of four main com-
ponents: Model Converter, Storyboard Generator, Data Flow Generator, and Component Tree
Generator. The model converter is responsible to read and convert BMML files into a single WXML
file. The generators derive the corresponding view from the loaded user interface model. We use
JAXB (Java Architecture for XML Binding) to map our Java classes to our user interface model
languages (WXML, TXML, DXML).

BMML to WXML converter
Balsamiq stores each wireframe in a custom XML-based file format, the BMML format. Figure
5.2 shows how we convert multiple BMML files into one WXML file. In order to convert a BMML
wireframe object into a WXML wireframe object with JAXB, we defined the schema of the BMML
language (appendix D.1). The model converter then reads a folder with BMML files and the defined
schema. Afterwards JAXB unmarshells the BMML files into java objects and we are able to convert
the objects. Last, we are able to marshal the java objects into our WXML format and write a
WXML file.

Figure 5.2.: BMML to WXML

Figure 5.3.: Grid sketched with Balsamiq

Even though the BMML format is quite simple, we dealt with some challenges, for example: A
grid defined in BMML (see listing 5.4) stores all information in the <text/> tag (see 5.4). The
conversion of these URL encoded, coma separated string became a chore in and on itself.4 The
corresponding representation of the grid in WXML can be found in fig. 5.3.

4Wireframe2Artefact does not support the conversion of every possible input yet.

43

5. Tool: Wireframe2Artefact

1 <control controlID="0" controlTypeID="com.balsamiq.mockups::DataGrid" x="60" y="20" w="-1"
h="-1" measuredW="340" measuredH="195" zOrder="0" locked="false" isInGroup="-1">

2 <controlProperties>
3 <text>Name%5Cr%28job%20title%29%20%5E%2C%20Age%20%5Ev%2C%20Nickname%2C%20Employee

%20v%0AGiacomo%20Guilizzoni%5CrFounder%20%26%20CEO%2C%2037%2C%20Peldi%2C%20%28
o%29%0AMarco%20Botton%5CrTuttofare%2C%2034%2C%20%2C%20%5Bx%5D%0AMariah%20
Maclachlan%5CrBetter%20Half%2C%2037%2C%20Patata%2C%20%5B-%5D%0AValerie%20
Liberty%5CrHead%20Chef%2C%20%3A%29%2C%20Val%2C%20%5Bx%5D%0AGuido%20Jack%20
Guilizzoni%2C%206%2C%20The%20Guids%2C%20%5B%5D%0A%7B64L%2C%200R%2C%2035%2C%200
C%7D

4 </text>
5 </controlProperties>
6 </control>

Listing 5.4: "Grid in BMML"

1 <table hasHeader="true" rowHeight="30" state="default" xPos="560" yPos="62" width="340"
height="195" zOrder="5">

2 <row selected="false">
3 <cell>
4 <label>
5 <text bold="false" undelined="false" strikeout="false" italic="false"

fontSize="13" orientation="default" color="black" opacity="1.0" align=
"tr">Name\n(job title)

6 </text>
7 </label>
8 </cell>
9 ...

10 </row>
11
12 </table>

Listing 5.5: "Grid in WXML"

Generators
The generators of Wireframe2Artefact have been implemented as described in chapter 4. We used
JGraphT5, a free Java graph library that provides an ample set of graph-theory algorithms for the
decomposition of the shared elements graph (algorithm 4).

5.5. Current Limitations
Being a proof of concept, the current implementation of Wireframe2Arefact still lacks some function-
ality that would be desirable for real-world projects. This section mentions some issues we are aware
of and which do not require major conceptual work to be implemented. We discuss more complex
open issues that would require substantial research or conceptual improvements in chapter 7 and in
section 8.2.

Extended Balsamiq Parser Wireframe2Artefact is able to read and convert the basic elements
described in a set BMML files to our underlying model (WXML). We are still lacking some func-
tionalities in our model converter. An example is the conversion of the styles defined in BMML.

5http://jgrapht.org/

44

5.5. Current Limitations

These features are crucial to allow lossless conversion from a WXML file back into BMML files. Fur-
thermore, the BMML file specification allows the user to define custom properties for each element
(control). Balsamiq does not use these properties, but stores them in the BMML file. This allows
us to losslessly convert our interaction and operation information specified in the WXML file. The
conversion from WXML to BMML can be implemented analog to the conversion from BMML to
WXML.

Tool Support The industry has brought up an extensive number of tools to target particular
needs of the user interface design. In order to target the needs of a real-world software project, it
would be desirable to offer extensive tool support for:

• Rapid wireframing tools other than Balsamiq

• UML or UML drawing tools to simplify the specification of the data model through class
diagrams or entity relationship diagrams

• Tools to specify use-cases or user stories to simplify the modelling of user tasks

This could be targeted by providing a mechanism to exchange documents of outside tools without
losing the specified relations. This mechanism could be realized analog to the mechanism we proposed
for the Balsamiq wireframing tool.

Performance Optimization During the implementation of Wireframe2Artefact we did not fo-
cus on performance issues. Every time the information of the input models changes, all artefacts
(storyboards, data flow diagrams and component tree) are derived. We recommend to use the in-
formation of the equality relations (section 4.3.3, section 4.4.3, section 4.5.3) to determine whether
a component tree, storyboard or data flow diagram has to be updated or not.

Extend Functionality Our reference implementation focuses on the most important tasks, such
as linking steps and operations to interactions. Concerning the usability of this tool, it would be
handy to have a more extended set of functions:

• Editing of the tasks model as well as the data model within the tool

• Balsamiq adapter to allow "editing" Balsamiq wireframes within the tool

• Graphic representation of the data flow model

45

6. Case Study
In this chapter, we will put Wireframe2Artifact to the test and show that it is useful for real-world
applications. First, we will specify the user interface with Wireframe2Artefact and second compare
the component tree derived by the tool to the actual implementation of the project. Our example
is a time account web-application which has been developed at msg systems ag.
This application is well suitable for our case study, because it has a significant size, but its user

interface and functionalities are still easy to understand.

6.1. P1-Timesheet App
P1-Timesheet is a time account web-application designed and developed at msg systems ag. The
development of the P1-Timesheet application started in summer 2013. Version 1.0.0 has been
released in February 2014 and is intended to be used by approximately 2000 employees on a daily
basis at the end of 2014. Its component-based frontend architecture is implemented using the
componentjs framework [Enga]1, based on the approach presented by [Engc].
It is used to manage working hours and holidays of the employees and its main functionality can

be split down to the following activities: The user has to login to the system in order to use the app.
He can browse through his bookings, which show booked working hours and remaining holidays. He
can switch between different views of his bookings, either displayed in a list, a table or a daily view.
Furthermore, the app enables the user to add new entries to the booking list or copy an existing
entry.
When the user logs in, the app verifies the users name and password and loads all data necessary

to display the users booking list, so that navigating through the app does not require loading any
additional data. When creating or copying an entry of the bookings, a new entry is created and the
bookings updated.

6.2. Specification of the UI
The user interface development process of the P1-Timesheet app did not follow any particular
approach. Most notably, they sketched an extensive set of 65 wireframes, which are very detailed
and highly interactive. All wireframes have been created with the Balsamiq wireframing tool. For
our evaluation we are going to use reduced subset of the specified wireframes, due to a high number
of redundant and obsolete wireframes. Furthermore, they documented the initial user tasks in a
small use-case diagram. The main data objects and their relations have been documented as an
UML class diagram. The fulll example and all artefacts mentioned above can be found on the CD
enclosed to this thesis.
It is important to know that they did not create any storyboards or sequence diagrams during the

UI design process. Even though they sketched the wireframes based on the tasks they documented,
they did not document the relation between wireframes and tasks.

1http://componentjs.com/

47

6. Case Study

This is an example how beneficial Wireframe2Artefact can be in the development of a user inter-
face. Even though, the developers knew how each wireframe was related to a particular task, they
had no possibilities to document or synchronize this relationship within the wireframes themselves.
In the following, we are going to show how the specification of the user interface looks after loading

the original wireframes, tasks and data objects. Furthermore we are going to enhance the wireframes
by refining the interactions according to the information provided by the project manager.2

We start with a snippet of the user tasks, which can be seen in listing 6.1. It shows the login task
and its two simple steps in TXML. We did focus on the three major task, login, create and copy
and entry during this evaluation, because they promised to be the most demanding in terms of their
corresponding interactions. Nevertheless, the designer is free to choose what interactions should or
should not be refined. Specifying only parts of the user interface does not have any effect on the
resulting output.

1 <task>
2 <id>4a5c1ca4-6617-4184-a505-8c1c14bd5fe4</id>
3 <title>Login</title>
4 <description>The user wants to login to the system.</description>
5 <role name="User"/>
6 <step id="e7268d88-5f1c-489d-a13c-4f60dcd6eeba" name="Enter password and username"/>
7 <step id="0bdf0a7d-5a63-4683-837f-bd2923875cac" name="Click the ’Login’ button"/>
8 </task>

Listing 6.1: "P1-Timesheet Task Model"

The following snippet (listing 6.2) shows a data object defined in DXML and matches the "User"
class in the original P1-Timesheet UML class diagram3.

1 <data>
2 <id>092f69c1-a356-498f-a2d1-8b4b25b8d031</id>
3 <name>User</name>
4 <attribute name="givenname"/>
5 <attribute name="surname"/>
6 <attribute name="email"/>
7 <attribute name="monthdata"/>
8 <attribute name="pspelements"/>
9 </data>

Listing 6.2: "P1-Timesheet Task Model"

The next snippet (6.3) shows the specification for the login button of the application, before refining
the interaction of the button. With Wireframe2Artefact we refined the interactions as the last
snippet (6.4) shows the specification of the same button after refining the interaction. As mentioned
before, the user is verified and all data is loaded after the login, which is documented through
<operation/> and <step/>.

1 <button selectedState="default" state="default" xPos="363" yPos="485" width="81" height="
27" zOrder="1">

2 <interaction trigger="" duration="" delay="" effect="">
3 <transition>
4 <target>booking_moth.bmml</target>
5 </transition>
6 </interaction>
7 <label state="default" xPos="363" yPos="485" width="81" height="27" zOrder="1">

2Note that user interface was not designed using the Wireframe2Artefact during the P1 project. This Evaluation
has been made after the release of P1 and is based on the documents provided by the project manager.

3The class diagram and full specification with all data objects and their relations can be found on the enclosed CD.

48

6.3. Comparison of the Component Trees

8 <text bold="false" undelined="false" strikeout="false" italic="false" fontSize="13
" color="black" opacity="1.0" align="center">Anmelden</text>

9 </label>
10 </button>

Listing 6.3: "Snippet of P1-Timesheet Specification"

1 <button selectedState="default" state="default" xPos="363" yPos="485" width="81" height="
27" zOrder="1">

2 <interaction trigger="click" duration="0.0" delay="0.0" effect="non">
3 <transition>
4 <condition>username and password valid</condition>
5 <target>booking_moth.bmml</target>
6 </transition>
7 <step>0bdf0a7d-5a63-4683-837f-bd2923875cac</step>
8 <operation type="read">092f69c1-a356-498f-a2d1-8b4b25b8d031</operation>
9 <operation type="read">f10ad57c-d9f7-4325-b994-90fa0e89cf56</operation>

10 <operation type="read">a5bba82a-b14e-4391-983b-21b9c98a1547</operation>
11 </interaction>
12 <label state="default" xPos="363" yPos="485" width="81" height="27" zOrder="1">
13 <text bold="false" undelined="false" strikeout="false" italic="false" fontSize="13

" color="black" opacity="1.0" align="center">Anmelden</text>
14 </label>
15 </button>

Listing 6.4: "Snippet of P1-Timesheet Specification"

Based on this specification, we are now able to derive the storyboards and the data flow diagrams
for the three tasks we defined. The fact that no storyboards or data flow diagrams have been
documented during the P1-Timesheet user interface development, makes it impossible to compare
our output. A full set of the derived storyboards and data flow diagrams can be found in appendix C.

6.3. Comparison of the Component Trees
In the previous section we showed how the user interface of the app was defined with Wire-
frame2Artefact. We spotted the differences between the wireframes with and without refined in-
teractions. Based on this specification we are able to generate the component tree and compare
it to the implemented architecture of the app. In fig. 6.1 we can see a simplified version of the
component tree of the P1-Timesheet application. It consists of four composite components: Root,
Panel, BookingList and Page. Furthermore, it has nine widget components.
The component tree derived by Wireframe2Artefact (fig. 6.2) consists of 12 widget components

and two composite components, including the root composite component. We can see that our
approach derived slightly more components compared to the original component tree. In order to
compare our component trees we named widget-component that group the same elements equal.
Which means, the "Login" component in the original component tree groups the same elements as
in "Login" component of the derived component tree.
We can see that our approach grouped most widget-components similar to the widget-components

in the original tree. One of the most significant differences is the "Header" widget component. In
the original tree, the header consists of three buttons and a label. The label text and size varies,
depending on the booking view, which is displayed. Our approach could not identify these labels as
similar elements (as described in section 4.5.2) and therefore split the header into a button group and
the particular labels. Furthermore, we found an empty and invisible button in one of the wireframes,
which is represented through the "EmptyButton" widget-component. Another difference can be

49

6. Case Study

Figure 6.1.: Component Tree

Figure 6.2.: Component Tree derived by Wireframe2Artefact

seen in the structure of the tree. The original tree has more composite components, compared to
the derived tree. By construction our approach creates as few composite-components as possible.
Whereas a software architect groups widget-components based on their logical cohesion in terms of
the domain.
This comparison has shown that most of the widget components have been identified as imple-

mented in the original tree. Nevertheless, designing architecture is a highly creative process and
relies heavily on the experience of architect. Therfore did not focus on code generation during this
thesis. Our main goal is it to provide engineers and developers a different view on the user interface,
to be able to make more knowledgeable decisions when designing the architecture of a user interface
design.

6.4. Lessons Learned
It is always highly interesting how such a tool performs when faced with a real-world project. The
following sections describes some of the most notably findings we had during the specification of the
user interface, as well as during the comparison of the component tree.

50

6.5. Full example

Usability Issues Even though Wireframe2Artefact is a prototype implementation, refining the
interactions was very intuitive and was done very quickly according to the steps of the defined tasks.
Furthermore, we figured that the navigation map (section 5.3) has proven very helpful to understand
the possible user interactions across all wireframes. It was especially useful to determine whether
an interaction was missing or pointed to the wrong target.

Expressiveness of the Model The expressiveness of our underlying model offered more than
sufficient expressiveness to describe the user interface design for the P1-Timesheet app. We did not
find any aspects that could not have been described with our modelling language. All input wire-
frames (BMML) have been losslessly converted into our underlying modelling language (WXML)4.

Usefulness of the Output The previous section has shown that our tool was able to derive a
component tree very similar to the component tree of the actual implementation. Even though our
tool had some difficulties with the structure of the tree, the result would still be beneficial.

6.5. Full example
The full example can be found on the CD enclosed to this thesis.

4As mentioned in section 5.5, our model converter does not losslessly convert all Balsamiq files yet. It was tailored
in order to convert the wireframes of this case study.

51

7. Towards responsive User Interfaces
In this chapter we give an overview and a draft for a possible solution when designing responsive
user interfaces. We start with an overview of the problems we face when creating and maintaining
user interface designs (section 7.1). We then focus on two particular challenges - providing assis-
tance during the design process (section 7.2) and adapting the derivation of the component tree
(section 7.3).

7.1. Overview
Most notably, nowadays user interfaces are developed via the popular HTML5 technology stack for
even running on multiple types of devices, such as phones, tablets or desktops in parallel. Those
interfaces are usually designed separately either mobile-first or desktop-first or a hybrid method.
Designing and maintaining those responsive user interfaces challenges most user interface design
approaches. Even though our approach and its underlying model (section 7.2) allows specifying
more than one wireframe model for a given user interface design, we are faced with difficulties:

How can we assist maintaining multiple wireframe models in one UI design? When
dealing with responsive user interfaces, we are confronted with specifying and maintaining a set
of wireframe models, each consisting of a set of wireframes. This is significantly more work for a
designer, as he has to specify interactions and their related operations and steps for each wireframe
model separately. This is especially time consuming when the defined wireframe models of the
different devices look and behave similar. A draft for a possible solution is described in section 7.2.

How can we derive one component tree for multiple wireframe models? Furthermore,
the derivation of a component tree has to be adapted in order to work well with responsive user
interfaces. The current approach offers a very basic solution for this problem, by simply deriving a
component tree for each wireframe model (section 4.5.2). This violates our requirement to maximize
reusability of components and is therefore not a sufficient solution. Hence, we need to adapt the
derivation of the component tree in order to master this problem. In section 7.3 we briefly explain
how a possible solution could look like.

7.2. Assisting responsive User Design
One possibility to target this challenge is by enhancing the model with the possibility to interrelate
different wireframe models. This could be done before or after the derivation of the component tree,
by providing a mechanism to:

• Define a relation between the components derived from different wireframe models

• Define a relation between wireframes and elements of different wireframe models

53

7. Towards responsive User Interfaces

If done by the designer, especially the second approach would be time consuming and destruct the
initial concept of rapid prototyping. Therefore it is crucial to provide a mechanism to support the
designer when specifying and maintaining user interfaces

7.3. Adapting the front-end architecture derivation
Despite the fact that different device types usually require different visuals, we want maximum
reusability of UI dialogs between different devices. Hence, we have to adapt our methodology to
allow combining responsive design with the underlying component-orientation. In section 4.5.2 we
proposed an approach to derive a component tree. One of the first steps was building the shared-
elements graph by identifying similar elements and grouping them to widget-components. This leads
to the following questions:

How can we identify similar elements of different wireframe models? By construction,
the similarity definition is mainly based on the size and position of an element relative to its frame
(e.g. browser window, phone, etc.). Even though different devices share similar elements in the
proper meaning of the word, their relative position and size diverges due to different frame sizes.
The naive way to solve this problem is to create a mutually exclusive sub-tree for each device. The
parent composite-component of the sub-trees will then detect which device is used and decide which
sub-tree will be visible. This approach is not satisfying due to the lack of reusability of similar
components across devices. In section 7.3.1 we briefly propose an idea of how a solution to this
problem could look like.

How canwe handle shared components? Another problem when handling multiple wireframe
models within one user interface design is by specifying the components they have in common.
Assume we have a have identified similar elements and are able to group them into components as
described in section 4.5.2. We are faced with some difficulties: The component is specified by a set:
component={{en, em, ..., eo}, ..., {ei, ..., ej} } where en ∼elem em, em ∼elem eo, en ∼elem eo and so
on. Consequently an arbitrary element of each subset can be used as a proxy for the representation
of an element in a component. If we adopt the definition of similarity to allow elements with different
size and position, the proxy has to be chosen depending on the device. A brief idea how to target
this problem can be found in section 7.3.2.

7.3.1. Similarity Definition for Elements and Components
Although we have different wireframe models, they are all linked to the same task and data model.
A mechanism to identify similar widgets other than through their position and size could be found
by those links:
Imagine having two elements of different wireframe models with two interactions, both interactions
performing the same operation and referencing to the same step. This implies that those elements
behave equally in the terms of user experience. Assuming that the designer followed basic usability
guidelines when sketching the wireframes, we can conclude that those elements can be considered
similar. Based on this information we can adapt the ∼elem relation.

7.3.2. Handling shared Components
The problem of finding a proxy element based on the device type could be solved by providing a
notation for the proxy in the component tree model. A possible solution could be defined like this:

54

7.3. Adapting the front-end architecture derivation

instead of the widget-component knowing its position and size, the parent composite-component
needs to know these information. The composite-component decides, based on the device, how
the widget-component will be layouted. In short, the parent composite-component of each shared
widget-component holds one reference per device type (wireframe model) to a proxy element.

55

8. Further Work and Conclusion
In the following sections we will summarize our findings for the wireframe-driven user interface
design approach and its benefits for real world projects. In the last section we discuss potential
research topics to build on top of the foundation laid in this thesis.

8.1. Conclusion
This thesis proposed an approach for user interface design built on one model that interrelates the
concepts of wireframes, user tasks, domain objects and user roles.
We first set out to examine two forms of user interface design approaches - wireframing approaches

and model-based approaches - and evaluate their suitability to identify points to improve. As
previously stated, what differentiates model-based user interface design form rapidly wireframing
the user interface is the possibility to capture all relevant aspects of a user interface in a structured
and well-defined manner. These include the aspect that user interface designs need to capture
the user tasks, as well as the corresponding roles and domain objects. In order to compare these
approaches, we carried out four scenarios of user interface design which cover the process, starting
from the initial sketches up to fine grained models. Based on these scenarios we defined a set of
requirements for concept and tooling that can be adopted in the industry. From this examination, it
has been shown that existing model-based approaches provide great ways to specify all kinds of user
interface models, but fall short in effortlessly creating and maintaining those models. Furthermore,
the creative process of sketching an initial user interface to gather and discuss requirements is
neglected by those approaches. We figured that there is also a very high expectation of the design
process itself; it must be suitable for early stages in the development circle, integrate well with
common software engineering methods and provide a low barrier of entry.
Thus, we provide an approach that combines the benefits of rapid wireframing and model-based

approaches. Our approach is built on a universal model that consists of three tightly connected
sub-models: wireframes, user tasks and data objects. We designed the wireframes as the foundation
of our model, to emphasize rapidly sketching a UI during early stages of the development. We
interrelate these sub-models by introducing interactions and operations. Based on this user interface
model, we were able to slice different views and provide storyboards and data flow diagrams for each
task. Furthermore, we give an educated guess for a component-oriented frontend architecture.
To validate our approach and support our claims that it is feasible in real-world projects, we

implemented Wireframe2Artefact. Its underlying user interface model has been implemented and
split into three connected XML-based user interface languages (DXML, TXML, WXML). Wire-
frame2Artefact allows the user to specify a user interface design. Furthermore, our tool derives
storyboards, data flow diagrams and a component tree from a given user interface to enable design-
ers, domain experts and engineers to effectively communicate the details of a design. While still a
lot of work has to be done, we find Wireframe2Artefact highly usable for the scenarios we described.
Our case study has shown that our underlying model is suitable for common user interface designs
of real-world projects.

57

8. Further Work and Conclusion

8.2. Future work
This thesis has thrown up many questions that need for further investigation. One particular
question deals with the design of responsive user interfaces and how we can assist the designer
to maintain consistency across different devices. In chapter 7 we gave a brief introduction to the
problems and how possible solutions could look like.
Moreover, the integration of our tool into the development process would be an interesting topic

to asses. In this thesis we made simple recommendations on how designers, developers and do-
main experts could collaborate using our approach. More information of the design process and its
activities would help us to establish a better understanding of the collaboration between different
professionals.
In terms of deriving the views, our approach just scratched at the surface. Further research

should therefore concentrate on the algorithm and informations needed to slice the different view. A
more powerful specification for the concept of operations seems desirable. In this thesis we focused
on the CRUD operations on data objects. Allowing the user to specify more advanced operations
and introducing concepts of custom methods with parameters and return values is desirable. This
information would help as to establish a greater degree of accuracy on the data flow diagrams.
Considerably more work will also need to be done to generate working code for a given user

interface model. Even though we provided an educated guess on the component tree of a user
interface, the communication flow of the components was not intended to be in the scope of this
thesis.

58

Bibliography
[AI07] Jesús M. Almendros-Jiménez and Luis Iribarne. “Describing Use-Case Relationships with

Sequence Diagrams”. In: Comput. J. 50.1 (2007), pp. 116–128. issn: 0010-4620. doi: 10.
1093/comjnl/bxl053. url: http://dx.doi.org/10.1093/comjnl/bxl053.

[Ang97] Angel R. Puerta. “A Model-Based Interface Development Environment”. In: IEEE Soft-
ware 14,4 (July/August (1997), pp. 41–47.

[Bra02] Ian Bray. An Introduction to Requirements Engineering -. Amsterdam: Pearson Educa-
tion, 2002. isbn: 978-0-201-76792-6.

[Enga] Ralf S. Engelschall. ComponentJS Features. url: http : / / componentjs . com /
features.html (visited on 03/02/2014).

[Engb] Ralf S. Engelschall. User Interface Component Tree Architecture Pattern. url: http:
//engelschall.com/go/EnTR-04:2013.12.

[Engc] Ralf S. Engelschall. User Interface Composition. url: http://engelschall.com/
go/EnTR-03:2013.12.

[Fow04] Martin Fowler. UML distilled: A brief guide to the standard object modeling language.
3rd ed. The Addison-Wesley object technology series. Boston: Addison-Wesley, 2004.
isbn: 9780321193681.

[Gro04] Jonathan L. Gross. Handbook of graph theory. Discrete mathematics and its applications.
Boca Raton and FL: CRC Press, 2004. isbn: 1584880902.

[HJD10] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements Engineering -. 3. Aufl.
Berlin, Heidelberg: Springer, 2010. isbn: 978-1-849-96405-0.

[Jak09] Jakub Linowski. Interactive Sketching Notation. Ed. by Wireframe Magazine. 2009. url:
http://wireframes.linowski.ca/2009/10/interactive-sketching-
notation-v0-1/.

[Lim+05] Quentin Limbourg et al. “USIXML: A Language Supporting Multi-path Development
of User Interfaces”. In: Engineering Human Computer Interaction and Interactive Sys-
tems. Ed. by Rémi Bastide, Philippe Palanque, and Jörg Roth. Vol. 3425. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2005, pp. 200–220. isbn: 978-3-540-
26097-4. doi: 10.1007/11431879_12. url: http://dx.doi.org/10.1007/
11431879_12.

[Lin99] James Lin. “A Visual Language for a Sketch-based UI Prototyping Tool”. In: CHI ’99
Extended Abstracts on Human Factors in Computing Systems. CHI EA ’99. Pittsburgh,
Pennsylvania: ACM, 1999, pp. 298–299. isbn: 1-58113-158-5. doi: 10.1145/632716.
632899. url: http://doi.acm.org/10.1145/632716.632899.

[LM95] James A. Landay and Brad A. Myers. “Interactive Sketching for the Early Stages of
User Interface Design”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’95. New York, NY, and USA: ACM Press/Addison-Wesley
Publishing Co, 1995, pp. 43–50. isbn: 0-201-84705-1. doi: 10.1145/223904.223910.
url: http://dx.doi.org/10.1145/223904.223910.

59

http://dx.doi.org/10.1093/comjnl/bxl053
http://dx.doi.org/10.1093/comjnl/bxl053
http://dx.doi.org/10.1093/comjnl/bxl053
http://componentjs.com/features.html
http://componentjs.com/features.html
http://engelschall.com/go/EnTR-04:2013.12
http://engelschall.com/go/EnTR-04:2013.12
http://engelschall.com/go/EnTR-03:2013.12
http://engelschall.com/go/EnTR-03:2013.12
http://wireframes.linowski.ca/2009/10/interactive-sketching-notation-v0-1/
http://wireframes.linowski.ca/2009/10/interactive-sketching-notation-v0-1/
http://dx.doi.org/10.1007/11431879_12
http://dx.doi.org/10.1007/11431879_12
http://dx.doi.org/10.1007/11431879_12
http://dx.doi.org/10.1145/632716.632899
http://dx.doi.org/10.1145/632716.632899
http://doi.acm.org/10.1145/632716.632899
http://dx.doi.org/10.1145/223904.223910
http://dx.doi.org/10.1145/223904.223910

Bibliography

[Nie94] Jakob Nielsen. “Usability Inspection Methods”. In: Conference Companion on Human
Factors in Computing Systems. CHI ’94. Boston, Massachusetts, USA: ACM, 1994,
pp. 413–414. isbn: 0-89791-651-4. doi: 10.1145/259963.260531. url: http:
//doi.acm.org/10.1145/259963.260531.

[PE02] Angel Puerta and Jacob Eisenstein. “XIML: A Common Representation for Interaction
Data”. In: Proceedings of the 7th International Conference on Intelligent User Interfaces.
IUI ’02. New York, NY, and USA: ACM, 2002, pp. 214–215. isbn: 1-58113-459-2. doi:
10.1145/502716.502763. url: http://doi.acm.org/10.1145/502716.
502763.

[PhD13] Tobias PhD. Komischke. Activity Theory & Hierarchical Task Analysis: The Power Cou-
ple for Effective UX Analysis. 2013. url: http://d3.infragistics.com/wp-
content/uploads/2013/04/Activity-Theory-and-Hiararchical-Task-
Analysis.pdf.

[PMM05] Angel Puerta, Michael Micheletti, and Alan Mak. “The UI Pilot: A Model-based Tool to
Guide Early Interface Design”. In: Proceedings of the 10th International Conference on
Intelligent User Interfaces. IUI ’05. New York, NY, and USA: ACM, 2005, pp. 215–222.
isbn: 1-58113-894-6. doi: 10.1145/1040830.1040877. url: http://doi.acm.
org/10.1145/1040830.1040877.

[Pri90] Rubén Prieto-Díaz. “Domain Analysis: An Introduction”. In: SIGSOFT Softw. Eng.
Notes 15.2 (Apr. 1990), pp. 47–54. issn: 0163-5948. doi: 10.1145/382296.382703.
url: http://doi.acm.org/10.1145/382296.382703.

[RF13] Michael Richter and Markus D. Flückiger. Usability Engineering kompakt: Benutzbare
Produkte gezielt entwickeln. 3. Aufl. IT kompakt. Berlin: Springer Vieweg, 2013. isbn:
9783642348310.

[SB10] Florian Sarodnick and Henning Brau.Methoden der Usability Evaluation: Wissenschaftliche
Grundlagen und praktische Anwendung. 2., überarb. u. aktualis. Aufl. Wirtschaftspsy-
chologie in Anwendung. Bern: Verlag Hans Huber, 2010. isbn: 9783456848839.

[Vaa] Christian Vaas. Pattern Guideline and Constraint Validation of Runtime Communication
in User Interface Component Architectures. url: http://architecturedissertation.
com/publication/MasterThesis-Vaas.pdf (visited on 03/02/2014).

60

http://dx.doi.org/10.1145/259963.260531
http://doi.acm.org/10.1145/259963.260531
http://doi.acm.org/10.1145/259963.260531
http://dx.doi.org/10.1145/502716.502763
http://doi.acm.org/10.1145/502716.502763
http://doi.acm.org/10.1145/502716.502763
http://d3.infragistics.com/wp-content/uploads/2013/04/Activity-Theory-and-Hiararchical-Task-Analysis.pdf
http://d3.infragistics.com/wp-content/uploads/2013/04/Activity-Theory-and-Hiararchical-Task-Analysis.pdf
http://d3.infragistics.com/wp-content/uploads/2013/04/Activity-Theory-and-Hiararchical-Task-Analysis.pdf
http://dx.doi.org/10.1145/1040830.1040877
http://doi.acm.org/10.1145/1040830.1040877
http://doi.acm.org/10.1145/1040830.1040877
http://dx.doi.org/10.1145/382296.382703
http://doi.acm.org/10.1145/382296.382703
http://architecturedissertation.com/publication/MasterThesis-Vaas.pdf
http://architecturedissertation.com/publication/MasterThesis-Vaas.pdf

A. List of Wireframe Element Types
The following list shows all element types of our user interface model. Further details on each
element type can be found in the schemas in appendix D or in the implementation of the schemas
in the source code (see enclosed CD).

Accordion

Alert

Annotation

Arrow

Image

Bread Crumbs

Button

Callout

Chart

Check Box

Check Box Group

Collapsible Panel

Color Picker

Combo Box

Cover Flow

Curly Brace

Date Chooser

Frame

Geometric

Group

Icon

Label

Link Bar

Link

List

List Item

Media

Menu Bar

Menu

Menu Item

Modal Overlay

Numeric Stepper

Panel

Paragraph

Phone Keyboard

Phone Menu

Phone Picker

Progress Bar

Radio Button

Radio Button Group

Row Element

Rule

Scroll Bar

Search Field

Slider

Splitter

Sticky Note

Tabbar

Tab

Table

Text Area

Tooltip

Tree

Lines

Window

61

B. Wireframe2Artefact Screenshots
The following figures show screenshots of each tab of Wireframe2Artefact. In all screenshots the
"my to-do app" is used as an example input.

Figure B.1.: Wireframe Tab

Figure B.2.: Task Tab

63

B. Wireframe2Artefact Screenshots

Figure B.3.: Data Tab

Figure B.4.: Storyboard Tab

64

Figure B.5.: Data Flow Tab

Figure B.6.: Component Tree Tab

65

C. P1-Timesheet

In chapter 6 we introcuced the P1-Timesheet app developed at msg systems ag. Furthermore, we
specified its UI with Wireframe2Artefact and derived storyboards and data flow diagrams for each
task: login, create entry and copy entry. The following section shows a screenshot for each storyboard
derived by our tool. The next sections shows the derived data flow diagrams.

C.1. Storyboards

The following figures show a screenhot of the stroyboard derived by Wireframe2Artefact.

Figure C.1.: Login Storyboard

67

C. P1-Timesheet

Figure C.2.: Create Entry Storyboard

Figure C.3.: Copy Entry Storyboard

68

C.2. Data Flow Diagrams

C.2. Data Flow Diagrams
This section shows the data flow diagrams of the P1-Timesheet app as derived by our tool. The
left hand side, shows the textual output of our tool. The right hand side shows the corresponding
digram, which was generated by a web application called "web sequence diagrams"1.

Figure C.4.: Login Data Flow Diagram

Figure C.5.: Create Entry Data Flow Diagram

Figure C.6.: Copy Entry Data Flow Diagram

1https://www.websequencediagrams.com/

69

D. RelaxNG Schemas
As mentioned in section 5.2, Wireframe2Artefacts underlying framework is based on three XML-
based meta-level modelling languages (TXML, DXML,WXML). The corresponding RelaxNG schemas
for each language can be found in the following sections.

D.1. RelaxNG Schema of the Balsamiq Model
The following schema describes the BMML file format. We created this specification based on the
poorly documented BMML file format specification on the Balsamiq Webpage1.

1 grammar {
2 start = element mockup {mockup-elem}
3
4 mockup-elem =
5 attribute version {xsd:string},
6 attribute skin {"sketch" | "wireframe"},
7 attribute fontFace {"Balsamiq Sans" | "Sans"},
8 attribute measuredW {xsd:integer},
9 attribute measuredH {xsd:integer},

10 attribute mockupW {xsd:integer},
11 attribute mockupH {xsd:integer},
12 element controls {controls-elem} ?
13
14 controls-elem =
15 element control {control-elem} *
16
17 control-elem =
18 attribute controlID {xsd:nonNegativeInteger},
19 attribute controlTypeID {controlType-attr},
20 attribute x {xsd:integer},
21 attribute y {xsd:integer},
22 attribute w {xsd:integer},
23 attribute h {xsd:integer},
24 attribute measuredW {xsd:integer},
25 attribute measuredH {xsd:integer},
26 attribute zOrder {xsd:nonNegativeInteger},
27 attribute locked {xsd:boolean},
28 attribute isInGroup {isInGroup-attr},
29 element controlProperties {controlProperty-elem}?,
30 element groupChildrenDescriptors {groupChildrenDescriptors-elem} ?
31
32 groupChildrenDescriptors-elem =
33 element control {control-elem} +
34
35 controlProperty-elem =
36 element alternateRowColor {xsd:integer}?,
37 element model {"IPhone4" | "IPhone5"}?,
38 element rowHeight {xsd:integer}?,
39 element hasHeader {xsd:boolean}?,

1http://support.balsamiq.com/customer/portal/articles/111834

71

D. RelaxNG Schemas

40 element vLines {xsd:boolean}?,
41 element hLines {xsd:boolean}?,
42 element backgroundAlpha {xsd:float {pattern = "(0\.[0-9][0-9]*)|1"}}?,
43 element bgPattern {"allWhite" | "allBlack" | "topOnly" | "topBlueBottom" | "

topBlackBottom"}?,
44 element bgTransparent {xsd:boolean}?,
45 element topBar {xsd:boolean} ?,
46 element align {"right" | "left" | "center"} ?,
47 element bold {xsd:boolean} ?,
48 element italic {xsd:boolean} ?,
49 element underline {xsd:boolean} ?,
50 element size {xsd:integer} ?,
51 element borderStyle {"none" | "square" | "squareBreakline" | "roundedSolid" | "

roundedDotted"} ?,
52 element borderColor {xsd:integer} ?,
53 element close {xsd:boolean} ?,
54 element minimize {xsd:boolean} ?,
55 element maximizeRestore {xsd:boolean} ?,
56 element dragger {xsd:boolean} ?,
57 element topheight {xsd:integer} ?,
58 element bottomheight {xsd:integer} ?,
59 element color {xsd:integer} ?,
60 element crop {crop-content} ?,
61 element customData {xsd:string} ?,
62 element customID {xsd:string} ?,
63 element filter {xsd:boolean} ?,
64 element direction {"left" | "center" | "right" | "bottom" | "top"} ?,
65 element href {href-content} ?,
66 element hrefs {hrefs-content} ?,
67 element icon {icon-content} ?,
68 element indeterminate {xsd:boolean} ?,
69 element scrollBarValue {xsd:integer {pattern = "[0-9]|[1-9][0-9]|100"}} ?,
70 element verticalScrollbar {xsd:boolean} ?,
71 element horizontalScrollbar {xsd:boolean} ?,
72 element labelPosition {"bottom" | "right"} ?,
73 element leftArrow {xsd:boolean} ?,
74 element rightArrow {xsd:boolean} ?,
75 element curvature {xsd:integer {pattern = "-1|0|1"}}?,
76 element map {xsd:string} ?,
77 element onOffState {"on" | "off"} ?,
78 element orientation {"portrait" | "landscape"} ?,
79 element position {"left" | "right"} ?,
80 element selectedIndex {xsd:integer} ?,
81 element src {xsd:string} ?,
82 element state {"up" | "selected" | "focused" | "disabled" | "disabledSelected" |

"indeterminate" | "disabledIndeterminate"} ?,
83 element tabHPosition {"left" | "right"}?,
84 element tabVPosition {"top" | "bottom"}?,
85 element tooltipDirection {"NW" | "N" | "NE" | "E" | "SE" | "S" | "SW" | "W"} ?,
86 element value {xsd:integer {pattern = "[0-9]|[1-9][0-9]|100"}} ?,
87 element shape {"circle" | "rectangle" | "roundRect"| "dottedRect" | "diamond"| "

star" | "triangle"| "parallelogram" | "rectangle%20breakline%20bottom%20" | "
rectangle%20breakline%20top"} ?,

88 element shapeRotation {"0" | "90" | "180" |"270"} ?,
89 element override {override-elem} *,
90 element text {xsd:string} ?,
91 element stroke {"solid" | "dashed" | "dotted" | "breakBottom" | "breakTop" | "

break"} ?,
92 element menuIcon {xsd:boolean} ?,
93 element textOrientation {xsd:string} ?
94

72

D.2. RelaxNG Schema of the Wireframe Task Model

95 override-elem =
96 attribute controlID {xsd:integer},
97 attribute x {xsd:integer} ?,
98 attribute y {xsd:integer} ?,
99 attribute w {xsd:integer} ?,

100 attribute h {xsd:integer} ?,
101 element crop {crop-content} ?
102
103 crop-content = xsd:string {pattern="([0-9]|[1-9][0-9]|[1-9][0-9][0-9]|1000)%2C

([0-9]|[1-9][0-9]|[1-9][0-9][0-9]|1000)%2C([0-9]|[1-9][0-9]|[1-9][0-9][0-9]|1000)%2C
([0-9]|[1-9][0-9]|[1-9][0-9][0-9]|1000)"}

104
105 isInGroup-attr = xsd:token {pattern="-1|([0-9]+)(:[0-9]+)*"}
106
107 href-content = xsd:string {pattern=".*%26bm%3B.*\.bmml%26bm%3B.*\.bmml%26bm%3B.*\.bmml"}
108
109 hrefs-content = xsd:string {pattern=".*%26bm%3B.*\.bmml%26bm%3B.*\.bmml%26bm%3B.*\.bmml

(,.*%26bm%3B.*\.bmml%26bm%3B.*\.bmml%26bm%3B.*\.bmml)*"}
110
111 controlTypeGroup-attr = xsd:token "__group__"
112
113 }

Listing D.1: "Baslamiq Specification"

D.2. RelaxNG Schema of the Wireframe Task Model
This schema specifies the task model as described in section 4.2.1.

1 grammar {
2 start = element taskModel {TaskModel}
3
4 TaskModel =
5 element task {Task}*
6
7 Task =
8 element id {xsd:string},
9 element title {xsd:string},

10 element description {xsd:string}?,
11 element role {Role}*,
12 element step {Step}*
13
14 Step =
15 attribute id {xsd:string},
16 attribute name {xsd:string}
17
18 Role =
19 attribute name {xsd:string}
20 }

Listing D.2: "RelaxNG Schema for the Wireframe Task Model"

D.3. RelaxNG Schema of the Wireframe Data Model
The following schema specifies the data model as described in section 4.2.2.

73

D. RelaxNG Schemas

1 grammar {
2 start = element dataModel {DataModel}
3
4 DataModel =
5 element data {Data}*,
6 element association {Association}*
7
8 Association =
9 element source {xsd:string},

10 element target {xsd:string},
11 element label {xsd:string}?,
12 element sourceMultiplicity {Multiplicicty}?,
13 element targetMultiplicity {Multiplicicty}?
14
15 Data =
16 element id {xsd:string},
17 element name {xsd:string},
18 element attribute {Attribute}*
19
20 Attribute =
21 attribute name {xsd:string}
22
23 Multiplicicty =
24 list {xsd:nonNegativeInteger, xsd:nonNegativeInteger}
25 }

Listing D.3: "RelaxNG Schema for the Wireframe Data Model"

D.4. RelaxNG Schema of the Wireframe Model
To improve understandability, we split the schema documents into nine sub-schemas. The following
sections show these sub-schemas.

1 grammar {
2 include "wireframe-annotation-elems.rnc"
3 include "wireframe-attr.rnc"
4 include "wireframe-container-elems.rnc"
5 include "wireframe-input-elems.rnc"
6 include "wireframe-layout-elems.rnc"
7 include "wireframe-media-elems.rnc"
8 include "wireframe-mobile-elems.rnc"
9 include "wireframe-text-elems.rnc"

10
11 start = element WireframeModel {Wireframe*}
12
13 Wireframe = element wireframe {
14 attribute id {xsd:string},
15 attribute width {xsd:int},
16 attribute height {xsd:int},
17 attribute filename {xsd:string},
18 (accordion-elem |
19 annotation-elem |
20 arrow-elem |
21 chart-elem |
22 breadCrumbs-elem|
23 callout-elem |
24 geometric-elem |
25 collapsiblePanel-elem |

74

D.4. RelaxNG Schema of the Wireframe Model

26 coverFlow-elem |
27 label-elem |
28 link-elem |
29 linkBar-elem |
30 paragraph-elem |
31 tooltip-elem |
32 phonePicker-elem |
33 phoneKeyboard-elem |
34 phoneMenu-elem |
35 button-elem |
36 checkBox-elem |
37 checkBoxGroup-elem |
38 colorPicker-elem |
39 comboBox-elem |
40 slider-elem |
41 list-elem |
42 menu-elem |
43 menuBar-elem |
44 radioButton-elem |
45 radioButtonGroup-elem |
46 searchField-elem |
47 dateChooser-elem |
48 textArea-elem |
49 tree-elem |
50 alert-elem |
51 numericStepper-elem |
52 table-elem |
53 scrollbar-elem |
54 splitter-elem |
55 modalOverlay-elem |
56 panel-elem |
57 window-elem |
58 tabbar-elem |
59 image-elem |
60 icon-elem |
61 progressBar-elem |
62 media-elem |
63 curlyBrace-elem |
64 stickyNote-elem |
65 frame-elem |
66 group-elem |
67 rule-elem
68)*
69 }
70
71
72 group-elem = element group {
73 BasicInteractionElement,
74 attribute groupName {xsd:string}?,
75 (accordion-elem |
76 annotation-elem |
77 arrow-elem |
78 chart-elem |
79 breadCrumbs-elem|
80 callout-elem |
81 geometric-elem |
82 collapsiblePanel-elem |
83 coverFlow-elem |
84 label-elem |
85 link-elem |
86 linkBar-elem |

75

D. RelaxNG Schemas

87 paragraph-elem |
88 tooltip-elem |
89 phonePicker-elem |
90 phoneKeyboard-elem |
91 phoneMenu-elem |
92 button-elem |
93 checkBox-elem |
94 checkBoxGroup-elem |
95 colorPicker-elem |
96 comboBox-elem |
97 slider-elem |
98 list-elem |
99 menu-elem |

100 menuBar-elem |
101 radioButton-elem |
102 radioButtonGroup-elem |
103 searchField-elem |
104 dateChooser-elem |
105 textArea-elem |
106 tree-elem |
107 alert-elem |
108 numericStepper-elem |
109 table-elem |
110 scrollbar-elem |
111 splitter-elem |
112 modalOverlay-elem |
113 panel-elem |
114 window-elem |
115 tabbar-elem |
116 image-elem |
117 icon-elem |
118 progressBar-elem |
119 media-elem |
120 curlyBrace-elem |
121 stickyNote-elem |
122 frame-elem |
123 group-elem |
124 rule-elem
125)*
126 }
127
128 CustomProperty =
129 attribute id {xsd:string},
130 xsd:string
131
132
133 Interaction =
134 attribute trigger {trigger-attr},
135 attribute duration {xsd:float}?,
136 attribute delay {xsd:float}?,
137 attribute effect {effect-attr}?,
138 element transition {transition-elem},
139 element step {Step}*,
140 element operation {Operation}*
141
142 transition-elem =
143 element condition {xsd:string}?,
144 element target {xsd:string}
145
146 Step =
147 xsd:string

76

D.4. RelaxNG Schema of the Wireframe Model

148
149 Operation =
150 attribute type {operationType-attr},
151 xsd:string
152
153
154 border-elem =
155 attribute width {xsd:int},
156 attribute stroke {stroke-attr},
157 attribute radius {xsd:int},
158 attribute color {color-attr},
159 attribute opacity {opacity-attr},
160 empty
161
162
163 style-elem =
164 attribute backgroundColor {color-attr}?,
165 attribute opacity {opacity-attr},
166 attribute margin {xsd:int}?,
167 attribute padding {xsd:int}?,
168 element backgroundImage {backgroundImage-elem} ?,
169 element border {border-elem}?
170
171
172 backgroundImage-elem =
173 attribute backgroundRepeat {"repeat-x" | "repeat-y" | "no-repeat" | "repeat"},
174 xsd:string
175
176 mobileDvice-elem =
177 attribute mobileDeviceType {mobileDeviceType-attr},
178 attribute model {model-attr} ?,
179 attribute topBar {xsd:boolean} ?,
180 attribute backgroundPattern {backgroundPattern-attr}?,
181 empty
182
183
184 otherDevice-elem =
185 attribute deviceType {deviceType-attr},
186 empty
187
188 WireframeElement =
189 attribute xPos {xsd:int}?,
190 attribute yPos {xsd:int}?,
191 attribute width {xsd:int}?,
192 attribute height {xsd:int}?,
193 attribute zOrder {xsd:int}?,
194 element style {style-elem}?,
195 element customProperty {CustomProperty}*
196
197 InteractionElement =
198 WireframeElement,
199 element interaction {Interaction}?,
200 attribute state {state-attr}?
201
202 NonInteractionElement =
203 WireframeElement
204
205
206 BasicInteractionElement =
207 InteractionElement,
208 element operation {Operation}*

77

D. RelaxNG Schemas

209
210
211 ContainerInteractionElement =
212 InteractionElement,
213 element operation {Operation}*,
214 attribute xPosInner {xsd:int}?,
215 attribute yPosInner {xsd:int}?,
216 attribute widthInner {xsd:int}?,
217 attribute heightInner {xsd:int}?,
218 attribute hSrollInner {scroll-attr}?,
219 attribute vSrollInner {scroll-attr}?
220 }

Listing D.4: "RelaxNG Schema for the Wireframe Model"

D.4.1. RelaxNG Schema of the Wireframe Attributes

1 color-attr = xsd:string
2
3 operationType-attr = "create" | "read" | "update" | "delete"
4
5 opacity-attr = xsd:float {pattern = "(0.[0-9][0.9]|1.00)"}
6
7 curvation-attr = "convex" | "straight" | "concarve"
8
9 scroll-attr = false-attr | scrollValue-attr

10
11 scrollValue-attr = xsd:int {pattern="[0-9]|[1-9][0-9]|100"}
12
13 state-attr = "default" | "disabled" | "focused"
14
15 selectedState-attr = "selected" | "indeterminate" | "default"
16
17 stroke-attr = "solid" | "dashed" | "dotted" | "breaklineBottom" | "breaklineTop" | "

break"
18
19 align-attr = "tl" | "tr" | "bl" | "br" | "center" | "middle"
20
21 orientation-attr = "horizontal" | "vertical"
22
23 labelOrientation-attr = "topBottom" | "bottomTop" | "default" | "slanted"
24
25 direction-attr = "left" | "right" | "top" | "down"
26
27 tooltipDirection-attr = "NW" | "N" | "NE" | "E" | "SE" | "S" | "SW" | "W"
28
29 iconSize-attr = xsd:int
30
31 rotation-attr = xsd:int {pattern="

[\-|+]?([0-9]|[1-9][1-9]|1[0-9][0-9]|2[0-9][0-9]|3[0-5][0-9]|360)"}
32
33 mobileDeviceType-attr = "iPhone" |"iPad" | "android" | "windowsPhone" | text
34
35 deviceType-attr = "browser" | "other" | text
36
37 model-attr = "4" | "5" | text
38
39 backgroundPattern-attr = "allWhite" | "allBlack" | "topBlueBottom" | "topBlackBottom"

| "topOnly" | text

78

D.4. RelaxNG Schema of the Wireframe Model

40
41 deviceOrientation-attr = "portrait" | "landscape"
42
43 trigger-attr = "touch" | "doubleTouch" | "drag" | "swipeLeft" | "swipeRight" | "

swipeUp" | "swipeDown" | "pinchOpen" | "pinchClose" | "click" | "doubleClick" | "
rightClick" | "hover"

44
45 false-attr = xsd:boolean - ("true" | "1")
46
47 true-attr = xsd:boolean - ("false" | "0")
48
49 effect-attr = xsd:string
50
51 shape-attr = "circle" | "rectangle" | "roundRectangle" | "diamond"| "star" | "

triangle"| "parallelogram"
52
53 annotationType-attr = "crossOut" | "scratchOut" | "redX" | "tagCloud"
54
55 mediaType-attr = "map" | "videoPlayer" | "playbackControls" | "volumeSlider" | "

webcam" | "formattingToolbar" | "hotspot" | "calendar"

Listing D.5: "RelaxNG Schema for the Wireframe Attributes"

D.4.2. RelaxNG Schema of the Wireframe Container Elements

1
2 accordion-elem = element accordion{
3 ContainerInteractionElement,
4 element accordionItems {accordionItem-elem +}
5 }
6
7 accordionItem-elem = element accordionItem {
8 BasicInteractionElement,
9 attribute selected {xsd:boolean},

10 label-elem?
11 }
12
13
14 panel-elem = element panel {
15 ContainerInteractionElement,
16 attribute name {xsd:string}
17 }
18
19 window-elem = element window{
20 ContainerInteractionElement,
21 attribute topHeight {xsd:int} ?,
22 attribute bottomHeight {xsd:int} ?,
23 attribute closeable {xsd:boolean},
24 attribute minimizeable {xsd:boolean},
25 attribute maximizeable {xsd:boolean},
26 attribute resizeable {xsd:boolean},
27 element title {text-elem}?
28 }
29
30 tabbar-elem = element tabbar{
31 ContainerInteractionElement,
32 attribute tabPosition {direction-attr},
33 element tab {tab-elem}
34 }

79

D. RelaxNG Schemas

35
36 tab-elem =
37 BasicInteractionElement,
38 attribute selected {xsd:boolean},
39 label-elem?
40
41 collapsiblePanel-elem = element collapsiblePanel {
42 ContainerInteractionElement,
43 attribute trigger {trigger-attr},
44 collapsiblePanelHead-elem
45 }
46
47 collapsiblePanelHead-elem = element head{
48 BasicInteractionElement,
49 attribute isOpen {xsd:boolean},
50 label-elem?
51 }
52
53
54 frame-elem = element frame {
55 ContainerInteractionElement,
56 attribute orientation {deviceOrientation-attr},
57 attribute frameType {mobileDvice-elem | otherDevice-elem}?
58 }

Listing D.6: "RelaxNG Schema for the Wireframe Container Elements"

D.4.3. RelaxNG Schema of the Wireframe Input Elements

1 button-elem = element button {
2 BasicInteractionElement,
3 attribute pointy {direction-attr}?,
4 attribute switch {"on" | "off"}?,
5 attribute selectedState {selectedState-attr},
6 menu-elem?,
7 label-elem?
8 }
9

10
11 menu-elem = element menu {
12 BasicInteractionElement,
13 attribute menuState {"open" | "closed"},
14 (element splitter {empty} |
15 element menuItem {menuItem-elem}
16)+
17 }
18
19 menuItem-elem =
20 BasicInteractionElement,
21 attribute selected {xsd:boolean},
22 (label-elem |
23 checkBox-elem |
24 radioButton-elem |
25 button-elem |
26 panel-elem
27)+
28
29 checkBox-elem = element checkBox {
30 BasicInteractionElement,

80

D.4. RelaxNG Schema of the Wireframe Model

31 attribute selectedState {selectedState-attr},
32 label-elem?
33 }
34
35 checkBoxGroup-elem = element checkBoxGroup{
36 BasicInteractionElement,
37 checkBox-elem+
38 }
39
40
41 colorPicker-elem = element colorPicker{
42 BasicInteractionElement,
43 attribute pickedColor {color-attr} ?
44 }
45
46
47 comboBox-elem = element comboBox{
48 BasicInteractionElement,
49 attribute comboBoxState {"open" | "closed"},
50 label-elem+
51 }
52
53
54 slider-elem = element slider{
55 BasicInteractionElement,
56 attribute value {scrollValue-attr},
57 attribute orientation {orientation-attr}
58 }
59
60
61 list-elem = element list{
62 BasicInteractionElement,
63 attribute evenColor {color-attr},
64 attribute oddColor {color-attr},
65 attribute hasHeader {xsd:boolean},
66 attribute rowHeight {xsd:int},
67 attribute vScroll {scroll-attr} ?,
68 attribute hScroll {scroll-attr} ?,
69 element listItem {listItem-elem}?
70 }
71
72
73 listItem-elem =
74 attribute selected {xsd:boolean},
75 label-elem*,
76 checkBox-elem*,
77 radioButton-elem*,
78 button-elem*,
79 panel-elem*
80
81 menuBar-elem = element menuBar{
82 BasicInteractionElement,
83 attribute orientation {orientation-attr},
84 button-elem+
85 }
86
87 radioButton-elem = element radioButton {
88 BasicInteractionElement,
89 attribute selectedState {selectedState-attr},
90 label-elem
91 }

81

D. RelaxNG Schemas

92
93
94 radioButtonGroup-elem = element radioButtonGroup {
95 BasicInteractionElement,
96 radioButton-elem+
97 }
98
99

100 searchField-elem = element searchField {
101 BasicInteractionElement,
102 label-elem ?,
103 element text {text-elem}?
104 }
105
106 textArea-elem = element textArea{
107 BasicInteractionElement,
108 attribute hSroll {scroll-attr}?,
109 attribute vSroll {scroll-attr}?,
110 label-elem?,
111 element text {text-elem}?
112 }
113
114
115 dateChooser-elem = element dateChooser{
116 BasicInteractionElement,
117 element pickedDate {xsd:string} ?
118 }
119
120 tree-elem = element tree{
121 BasicInteractionElement,
122 element root {treeItem-elem}
123 }
124
125
126 treeItem-elem =
127 BasicInteractionElement,
128 attribute selectedState {selectedState-attr},
129 attribute treeItemState {"open" | "closed"},
130 (element treeItem {treeItem-elem} |
131 label-elem |
132 checkBox-elem |
133 radioButton-elem |
134 button-elem |
135 panel-elem
136)+
137
138
139 alert-elem = element alert {
140 BasicInteractionElement,
141 attribute isModal {xsd:boolean}?,
142 element headline {text-elem}?,
143 element message {text-elem}?,
144 button-elem+
145 }
146
147 numericStepper-elem = element numericStepper {
148 BasicInteractionElement,
149 attribute pickedValue {xsd:int} ?,
150 element stepperItem {text-elem}+
151 }
152

82

D.4. RelaxNG Schema of the Wireframe Model

153
154 table-elem = element table{
155 BasicInteractionElement,
156 attribute evenColor {color-attr},
157 attribute oddColor {color-attr},
158 attribute hasHeader {xsd:boolean},
159 attribute rowHeight {xsd:int},
160 element verticalLines {tableLine-elem} ?,
161 element horizontalLines {tableLine-elem} ?,
162 element hScroll {scroll-attr} ?,
163 element vScroll {scroll-attr} ?,
164 element row {row-elem}+
165 }
166
167 tableLine-elem =
168 attribute width {xsd:int},
169 attribute stroke {stroke-attr},
170 attribute color {color-attr},
171 attribute opacity {opacity-attr},
172 empty
173
174 row-elem =
175 attribute selected {xsd:boolean},
176 element cell {cell-elem}*
177
178 cell-elem =
179 (label-elem |
180 checkBox-elem |
181 radioButton-elem |
182 button-elem |
183 panel-elem
184)+

Listing D.7: "RelaxNG Schema for the Wireframe Input Elements"

D.4.4. RelaxNG Schema of the Wireframe Layout Elements

1
2 geometric-elem = element geometric {
3 BasicInteractionElement,
4 attribute shape {shape-attr},
5 element text {text-elem}?
6 }
7
8 rule-elem = element rule{
9 BasicInteractionElement,

10 attribute stroke {stroke-attr},
11 attribute orientation {orientation-attr}
12 }
13
14
15 scrollbar-elem = element scrollBar{
16 BasicInteractionElement,
17 attribute value {scrollValue-attr},
18 attribute orientation {orientation-attr}
19 }
20
21
22

83

D. RelaxNG Schemas

23 splitter-elem = element splitter{
24 BasicInteractionElement,
25 attribute orientation {orientation-attr}
26 }
27
28 modalOverlay-elem = element modalOverlay {
29 BasicInteractionElement,
30 attribute color {xsd:string}
31 }

Listing D.8: "RelaxNG Schema for the Wireframe Layout Elements"

D.4.5. RelaxNG Schema of the Wireframe Media Elements

1 chart-elem = element chart {
2 BasicInteractionElement,
3 attribute chartType {"barChart" | "columnChart" | "lineChart" | "pieChart" }
4 }
5
6 coverFlow-elem = element coverFlow {
7 BasicInteractionElement,
8 attribute hScroll {scroll-attr}?,
9 element selectedImage {xsd:int}?,

10 element coverFlowImage {coverFlowImage-elem}+
11 }
12
13 coverFlowImage-elem =
14 element title {text-elem} ?,
15 element description {text-elem} ?,
16 element imagePath {xsd:string}
17
18
19 image-elem = element image {
20 BasicInteractionElement,
21 element imagePath {xsd:string}
22 }
23
24
25 icon-elem = element icon {
26 BasicInteractionElement,
27 attribute size {iconSize-attr},
28 attribute rotation {rotation-attr},
29 element imagePath {xsd:string}
30 }
31
32
33 progressBar-elem = element progressBar{
34 BasicInteractionElement,
35 attribute progressBarStyle {"standard" | "indeterminate"}
36 }
37
38
39 media-elem = element media{
40 BasicInteractionElement,
41 attribute mediaType {mediaType-attr}
42 }

Listing D.9: "RelaxNG Schema for the Wireframe Media Elements"

84

D.4. RelaxNG Schema of the Wireframe Model

D.4.6. RelaxNG Schema of the Wireframe Mobile Elements

1 phonePicker-elem = element phonePicker {
2 BasicInteractionElement,
3 attribute orientation {deviceOrientation-attr},
4 element column {phonePickerColumn-elem}+
5 }
6
7 phonePickerColumn-elem =
8 BasicInteractionElement,
9 attribute selected {xsd:boolean}?,

10 element columnItem {label-elem}+
11
12 phoneKeyboard-elem = element phoneKeyboard {
13 BasicInteractionElement,
14 attribute orientation {deviceOrientation-attr}
15 }
16
17 phoneMenu-elem = element phoneMenu {
18 BasicInteractionElement,
19 attribute orientation {deviceOrientation-attr},
20 element phoneMenuItem {phoneMenuItem-elem}+
21 }
22
23 phoneMenuItem-elem =
24 element draggable {xsd:boolean},
25 element deletable {xsd:boolean},
26 element submenu {xsd:boolean},
27 element selected {xsd:boolean} ?,
28 (label-elem |
29 button-elem |
30 checkBox-elem |
31 radioButton-elem |
32 panel-elem
33) +

Listing D.10: "RelaxNG Schema for the Wireframe Mobile Elements"

D.4.7. RelaxNG Schema of the Wireframe Text Elements

1 breadCrumbs-elem = element breadCrumbs {
2 BasicInteractionElement,
3 element breadcrumbItem {text-elem}+
4 }
5
6 label-elem = element label {
7 BasicInteractionElement,
8 attribute labelAlignment {direction-attr},
9 attribute orientation {labelOrientation-attr},

10 icon-elem?,
11 element text {text-elem}
12 }
13
14 link-elem = element link {
15 BasicInteractionElement,
16 attribute visited {xsd:boolean},
17 element text {text-elem}
18 }
19

85

D. RelaxNG Schemas

20 linkBar-elem = element linkBar {
21 BasicInteractionElement,
22 attribute linkColor {color-attr},
23 attribute splitterColor {color-attr},
24 element link {link-elem}+
25 }
26
27 paragraph-elem = element paragraph {
28 BasicInteractionElement,
29 element text {text-elem}?
30 }
31
32 tooltip-elem = element tooltip {
33 BasicInteractionElement,
34 attribute toolTipTrigger {trigger-attr} ?,
35 attribute tooltipDirection {tooltipDirection-attr},
36 element text {text-elem}?
37 }
38
39
40 callout-elem = element callout {
41 BasicInteractionElement,
42 label-elem?
43 }
44
45 text-elem =
46 attribute bold {xsd:boolean},
47 attribute undelined {xsd:boolean},
48 attribute strikeout {xsd:boolean},
49 attribute italic {xsd:boolean},
50 attribute fontSize {xsd:int},
51 attribute orientation {labelOrientation-attr},
52 attribute color {color-attr},
53 attribute opacity {opacity-attr},
54 attribute align {align-attr},
55 xsd:string

Listing D.11: "RelaxNG Schema for the Wireframe Text Elements"

D.4.8. RelaxNG Schema of the Wireframe Annotation Elements

1 arrow-elem = element arrow {
2 NonInteractionElement,
3 attribute direction {direction-attr},
4 attribute curvation {curvation-attr},
5 attribute stroke {stroke-attr},
6 attribute leftArrow {xsd:boolean},
7 attribute rightArrow {xsd:boolean}
8 }
9

10 curlyBrace-elem = element curlyBrace {
11 NonInteractionElement,
12 attribute direction {direction-attr},
13 attribute orientation {orientation-attr},
14 element text {text-elem}?
15 }
16
17 stickyNote-elem = element stickyNote{
18 NonInteractionElement,

86

D.4. RelaxNG Schema of the Wireframe Model

19 element text {text-elem}?
20 }
21
22 annotation-elem = element annotation {
23 NonInteractionElement,
24 attribute annotationType {annotationType-attr}
25 }

Listing D.12: "RelaxNG Schema for the Wireframe Annotation Elements"

87

	List of Figures
	Introduction
	Objective and Motivation
	State of the Art
	Contribution
	Structure of this Thesis

	User Interface Design
	Initial UI Design
	Task Analysis
	Domain Modelling
	Creating Low-Fidelity Prototypes

	Refining UI Designs
	Storyboarding
	Analyzing the Flow of Events

	Implementing the UI Design

	Requirements and Related Work
	Requirements
	Specifying UI Designs
	Views on UI Designs
	Estimation of UI Designs
	Specifying responsive UI Designs

	Related Work
	Classic Interface Design Tools
	Model-Based Interface Design Approaches
	User Interface Description Languages
	Shortcomings

	Wireframe-Driven UI Design
	Overview
	User Interface Model
	Task Model
	Data Model
	Wireframe Model
	Example

	Storyboard View
	Definition
	Approach
	Equality
	Example

	Dataflow View
	Definition
	Approach
	Equality
	Example

	Architecture View
	Definition
	Approach
	Equality
	Example

	Evaluation of UI Designs
	Example

	Tool: Wireframe2Artefact
	Overview
	User Interface DSL
	Features
	Architecture
	Current Limitations

	Case Study
	P1-Timesheet App
	Specification of the UI
	Comparison of the Component Trees
	Lessons Learned
	Full example

	Towards responsive User Interfaces
	Overview
	Assisting responsive User Design
	Adapting the front-end architecture derivation
	Similarity Definition for Elements and Components
	Handling shared Components

	Further Work and Conclusion
	Conclusion
	Future work

	List of Wireframe Element Types
	Wireframe2Artefact Screenshots
	P1-Timesheet
	Storyboards
	Data Flow Diagrams

	RelaxNG Schemas
	RelaxNG Schema of the Balsamiq Model
	RelaxNG Schema of the Wireframe Task Model
	RelaxNG Schema of the Wireframe Data Model
	RelaxNG Schema of the Wireframe Model
	RelaxNG Schema of the Wireframe Attributes
	RelaxNG Schema of the Wireframe Container Elements
	RelaxNG Schema of the Wireframe Input Elements
	RelaxNG Schema of the Wireframe Layout Elements
	RelaxNG Schema of the Wireframe Media Elements
	RelaxNG Schema of the Wireframe Mobile Elements
	RelaxNG Schema of the Wireframe Text Elements
	RelaxNG Schema of the Wireframe Annotation Elements

