

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

Institut für Software & Systems Engineering
Universitätsstraße 6a D-86135 Augsburg

Towards a Data-Driven
Enterprise Resource Architecture

Constantin Gerstberger

Master’s thesis in the Elite Graduate Program: Software
Engineering

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

Institut für Software & Systems Engineering
Universitätsstraße 6a D-86135 Augsburg

Towards a Data-Driven
Enterprise Resource Architecture

Matriculation number: 1279626
Started: 31. April 2014
Finished: 15. January 2015
First assessor: Prof. Dr. Alexander Knapp
Second assessor: Prof. Dr. Bernhard Bauer
Supervisors: Dipl.-Inf. Univ. Ralf S. Engelschall

Dipl.-Inf. Univ. Achim Mueller

ERKLÄRUNG

Hiermit versichere ich, dass ich diese Masterarbeit selbständig verfasst habe. Ich
habe dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

I, hereby certify that this thesis has been written by me, that it is the record of work
carried out by me and that I have not used anything else but the indicated sources
and tools.

Augsburg, den 15. Januar 2015 Constantin Gerstberger

Abstract

CONTEXT In recent years, the REpresentational State Transfer (REST) architectural
style has become one of the commonly employed approaches for realizing client-server
business applications. Among other things, this is because it promises various bene-
fits, such as standardized communication (e.g. based on the Hypertext Transfer Pro-
tocol (HTTP)) between and independent evolution of distributed system components.

MOTIVATION Though being labeled REST-compliant, many implementations however
seem to ignore various of its core principles; Most prominently: Hypermedia As The
Engine Of Application State (HATEOAS). As a result, developers often encounter a
broad range of problems seemingly not being addressed by REST. Typically this sur-
faces in questions such as “How do you design URLs in REST?” or “Why should you
put links in representations when working with a well known application programmer
interface (API)?”.

CHALLENGE Potentially, one of themain problems concerning REST is that its concept
of hypermedia based interaction is often explained based on how humans browse the
Web. While not being wrong, this approach distracts from one important difference
concerning enterprise applications:
Nowadays, their clients are often implemented as so called rich clients. In order to

provide a unique and elaborate user experience, these clients commonly represent a
(more or less) functional application on their own which, however, relies on specific
data exchange with a server.
According to the idea of hypermedia, rich clients would need to determine respec-

tively employed server interfaces at runtime - just as humans access websites, figure
out their content and subsequently decide what to do. While humans normally do not
have any trouble in this regard, implementing a machine to be able to do the same is
anything but easy. The result are applications being build on style often referred to as
pragmatic REST. While following some of its principles, they ignore the most central
one: hypermedia.
Consequently, the main challenge with regard to enterprise applications using rich

clients is machine-driven interaction: Enabling a machine client to determine and in-
teract with these features exposed by a server which are not handled by a human
user.

APPROACH To address these problems, this thesis first covers some concepts being
relevant for the combination of enterprise applications and REST: Good API design,
enterprise applications and remote procedure call (RPC) interaction style. Next, it dis-
cusses the conceptual side of REST while highlighting various conflicts of business-
process and REST-driven environments. After that, the thesis goes into detail with
regard to implementing hypermedia, covering status quo and problems concerning
REST-based, machine-driven interaction. In order to structure the identified problems
and to improve the possibilities in this regard, the thesis then presents an ontology
and approach combining the advantages of heavily human and machine-readable doc-
umentation. After discussing the application of said approach for an enterprise ap-

vii

plication architecture, the thesis concludes with the description of some experiences
made during the implementation of a respective server prototype.

viii

Contents

1. Introduction 1
1.1. Overview and Use Cases . 1
1.2. Data Model . 3

2. Fundamental concepts 5
2.1. Enterprise Applications . 5
2.2. API Design . 8
2.3. RPC and enterprise application development 12

3. REST from a conceptual perspective 15
3.1. Defining REST . 15

3.1.1. Architectural Style . 15
3.1.2. REST’s view of the Web . 17
3.1.3. What REST is not . 19

3.2. Key concepts of REST . 20
3.2.1. Resource Identifiers . 21
3.2.2. Resources . 22
3.2.3. Representations . 23
3.2.4. Resource & Application State . 25

3.3. Constraints . 27
3.3.1. Client-Server . 27
3.3.2. Stateless . 27
3.3.3. Caching . 29
3.3.4. Uniform Interface . 33
3.3.5. Layered System . 36
3.3.6. Code On Demand . 37

3.4. Common misconceptions . 37
3.4.1. Version Management . 37
3.4.2. Pragmatic REST . 38
3.4.3. Why not to call it REST . 39

4. Implementing the hypermedia strategy 41
4.1. Elements of a hypermedia representation . 41

4.1.1. Data Elements . 41
4.1.2. Control elements . 42

4.2. Semantic types of a hypermedia representation 45
4.2.1. Protocol Semantics . 45
4.2.2. Application Semantics . 47

4.3. Media types . 47
4.3.1. Aliases and term history . 48
4.3.2. Media types and hypermedia types . 49

ix

Contents

4.3.3. Media type naming and structure . 49
4.3.4. Semantic coverage . 51

4.4. Closing the semantic gap . 54
4.4.1. Embedded documentation . 54
4.4.2. Concerning machine-driven interaction 55
4.4.3. Semantic aliases . 57
4.4.4. Profile Identifiers . 60
4.4.5. Profiles . 61
4.4.6. Reusing machine-readable descriptions 63

5. Towards a Data-Driven Enterprise Resource Architecture 67
5.1. A new domain ontology . 67

5.1.1. Problem Domain . 69
5.1.2. Solution Domain . 73
5.1.3. Format & protocol domain . 76

5.2. Implementing the domain ontology . 77
5.2.1. Problem Domain . 77
5.2.2. Solution domain . 78
5.2.3. Format domain . 80

5.3. Usage in enterprise application environments 82

6. ERA-Prototype 85
6.1. Resources & representations . 85
6.2. Parsing representations . 85
6.3. Database interaction . 86
6.4. Persisting representations . 89
6.5. Profiles . 89

7. Conclusion 91
7.1. Summary . 91
7.2. Future work . 91

A. ERA-SD 93
A.1. Maximum skeleton . 94
A.2. Nodes . 94

B. ERA-FD 101
B.1. Maximum skeleton . 101
B.2. Nodes . 101

C. Bibliography 105

x

List of Figures

1.1. Use case diagram of the example application 2
1.2. UML class diagram of the example application 3

2.2. Characteristics of a Good API by [Blo07] . 9
2.3. How to print a DOM document in Java: An example of an insufficiently

powerful API [15] . 10
2.4. Basic RPC structure and interaction based on [Soa92] 12
2.5. Example RMI server interface . 13
2.6. An example for RPC based response representation 14

3.1. Abstraction levels in context of REST . 15
3.2. The key architectural properties of the Web 17
3.3. Conceptual UML class diagram showing the relationship(s) between re-

sources, representations and resource identifiers 20
3.4. The role and interaction of application and resource state in context of

REST . 25
3.5. Schematic illustration of stateful and stateless communication between

client and server . 28
3.6. Schematic illustration of communication via a cache or proxy component . 36

4.1. Data elements based on the Siren hypermedia format 42
4.2. Control elements based on the Siren [Swi14] hypermedia format 43
4.3. Categorization of state transition types . 44
4.4. Example representation using the XML variant of the HAL [Swi14] hyper-

media type . 46
4.5. Control element with inconsistent semantics 48
4.6. Example of an attempt to specify control elements based on applica-

tion/json . 49
4.7. Structure of a media type name . 50
4.8. Minimal example representation of a questionnaire based on Collec-

tion+JSON . 52
4.9. Example of representation based on the domain-specific media type

Maze+XML (taken from [RAR13] . 53
4.10.Example of embedded, human readable application semantics in HTML

control elements . 55
4.11.Example of embedded, human readable application semantics in HTML

data elements . 56
4.12.Conceptual UML class representation of semantic aliases, profile and pro-

file identifiers . 56
4.13.Example of using the HTML’s class attribute to specify semantic aliases . 58
4.14.Example of semantic descriptors based on HAL data elements 59

xi

List of Figures

4.15.Semantic descriptors using Microdata . 60
4.16.A machine readable profile of a questionnaire based on ALPS 63
4.17.Reuse scenarios concerning profiles definitions 64

5.1. Domain Ontology for Connected REST APIs 68
5.2. Abstracting definitions to the level the problem domain 70
5.3. Splitting non-atomic definition in the problem domain 71
5.4. Excerpt of figure 4.16 showing the definition of the composite descriptor

based on ALPS . 72
5.5. Structure and relationships between descriptors, profiles, representation

and resources based on UML class diagram 74
5.6. Reuse by references vs. reuse by copy vs. replication 76
5.7. Earlier draft of the domain ontology including the mapping domain 76
5.8. Nested descriptor definitions in ALPS . 77
5.9. Descriptor specifying a return type in ALPS 78
5.10.era-sd profile of a questionnaire . 79
5.11.era-fd representation of a questionnaire . 81
5.12.An exemplary data-driven enterprise resource architecture 82
5.13.A three tier architecture featuring a mediator tier 83

6.1. Exemplary era-fd representation of a questionnaire which could be sent
along with a PUT request . 85

6.2. Class based implementation of representations in Scala 87
6.3. Factory for creating resource specific append methods 88
6.4. Class based representation of a database table containing all values of a

questionnaire era-sd representation . 89

A.1. Maximum skeleton of an era-sd profile showing all specification possibilities 94
A.2. Example of a curies sequence within an era-sd profile 95
A.3. Example of a data node within an era-sd profile 97
A.4. Example of a controls node within an era-sd profile 97

B.1. Maximum skeleton of an era-fd profile showing all specification possibilities102
B.2. Example of the data node of an era-fd representation 102
B.3. Example of the data node of an era-fd representation 103

xii

1. Introduction
As an introduction, this chapter presents an application to be used as an ongoing
example through out thesis. To give an overview, it first explains the general concepts
of the application and discusses its main use cases. After that, the chapter covers
structure and relationship of its underlying entities.

1.1. Overview and Use Cases
The overall goal of the application is to allow people (speakers) giving a talk, presen-
tation or lecture to get realtime feedback.
For that purpose, the application lets them prepare a relatively simple set of ques-

tions along with weighted, predefined answers (a questionnaire). During a talk, the
audience (voters) can repeatedly vote for a specific answer to reflect their current
estimation.
To actually provide feedback, the application provides a continuously updated rep-

resentation of the average vote per question based on submitted votes and weighting
of answers. This representation is accessible by speakers as well as voters

Use Cases
As shown in figure 1.1, the application altogether features six uses which will be cov-
ered in the following.

Authenticate

As part of the Authenticate use case, the clients obtains some way (e.g. token) which
subsequently can be used for authentication. Mainly, this is required for the Manage,
Publish and Retract use cases.

Manage

The Manage use case involves creating and editing questionnaires including their
questions and answers. Authentication allows each speaker to manage his or her own
set of questionnaires. To prevent votes from being traceable in case of low submission
rates, a speaker can define an analysis delay which allow votes to only be used for
average vote calculation when having been submitted for a specified duration.

Publish

When intended for voting, a speaker can publish a previously created, not already
published questionnaire making it visible and accessible for voters. Before publishing,

1

1. Introduction

Figure 1.1.: Use case diagram of the example application

a speaker must define a unique identifier by which the questionnaire is thereafter
accessed.

Retract

To end the possibility of voting, a speaker can retract a previously published question-
naire.

Analyze

The Analyze use case comprises obtaining (graphical) average vote representations of
a specific time interval from the server. Votes are first averaged per voter before being
averaged by question. This allows to balance individual voters submitting different
quantities of votes.

ObtainVoterId

To be able to vote for answers of a questionnaire, a voter beforehand obtains a voter-
id, that is an opaque, rather short-lived token which is mainly required for the Analyze
use case.

Vote

As part of the Vote use case, voters access a published questionnaire and repeatedly
vote for a particular textitanswer of the questions listed by the questionnaire.

2

1.2. Data Model

1.2. Data Model
Figure 1.2 shows an Unified Modeling Language (UML) class diagram derived from
these use cases describing six entities: Speaker, Questionnaire, Question, Answer,
Vote and Voter. Thereby, each class also lists its anticipated, required methods.
Given that the exact authentication procedure does not really matter for the remain-

der on this thesis, details on the speaker were left out. To allow for averaging of votes
per time interval, the Vote entity received a respective submissionTime attribute.

Figure 1.2.: UML class diagram of the example application

3

2. Fundamental concepts
After the introduction in the last chapter, this one covers three basic concepts to es-
tablish additional context for the later parts of this thesis.
First, it discusses typical characteristics of enterprise applications with the goal to

anticipate common problems and pitfalls when trying to realize such applications in a
REST compliant manner.
After that, it outlines best practices for API design in general. This allows not only to

better understand the trade-offs induced by the REST outlined in chapter 3, but also
to evaluate the design choices with regard to formats presented in chapter 5.
Last, the chapter discusses the basics of RPC paradigm and shows that, in fact, many

REST-labeled APIs rather feature RPC characteristics [Fie08].

2.1. Enterprise Applications

Considering that, especially in context of enterprise applications, the majority of APIs
claiming to be REST compliant is actually not [RSK12], the question rises whether
or not there are fundamental conflicts between the design goals of enterprise applica-
tions and REST. In preparation to answer this question in the next chapter, this section
hence describes the general nature of enterprise applications.
Unfortunately, the term enterprise application is not very distinct. Alternatively, they

are also referred to as information systems and data processing [Fow02], or catego-
rized as business applications [Mic14]. Overall, no commonly agreed definition seems
to exist.
Nonetheless, the following characteristics are frequently mentioned one way or an-

other:

• Individual

• Process Driven

• Data Driven

• Secured

• Integrated

• Evolutionary

The remainder of this section discusses them in more detail.

5

2. Fundamental concepts

Individual

First and foremost, enterprise applications are business driven, meaning that they
are to provide value to the organization they are deployed in. This is achieved by
implementing so called business logic which in turn consists of business processes
and a typically large amount of business rules. The latter thereby describes cross-
cutting concerns which may affect many processes [Ulr10].
As a consequence, enterprise applications frequently prove to be fairly complex.

This is not only due to the sheer amount of business rules to be considered during
application development, but also because said rules often interact in unanticipated
ways [Fow02]. In addition, they rarely end up being employable in other organiza-
tions given that they have been tailored to specific needs and to present a competitive
advantage.
Given that enterprise applications are thus built on and validated against business

processes - after all, that is how users will evaluate the application - their design is
often influenced as well as explained in the following.

Process driven

Generally, an informational process models a transformation of information input to
information output by means of executing a variety of ordered functions [Krc10] (see
top of figure 2.1).
In context of single page applications (SPAs), this model is often altered so that only

the information required per process step (i.e. function) is provided at the time the
step is performed (see bottom of figure 2.1). In terms of an application client, this
corresponds to presenting the user dedicated views to collect information input or
enable a decision.

Figure 2.1.: Traditional informational process (top) based on [Krc10] and alternation
due to single page applications (bottom)

Interpreting the use cases presented in section 1.1 as business processes, both the
manage and the vote business process require information input based on the question
and answer entities of a questionnaire.

6

2.1. Enterprise Applications

With regard to the manage use case, a typical graphical user interface (GUI) could
for instance provide two list-based views: While the first one would serve to man-
age the questions belonging to a particular questionnaire as a first (process) step,
the second view would allow to equally handle answers of a respective question in a
consecutive (process) step.
For the vote use case, this GUI could serve a single view to simultaneously show all

questions of a questionnaire including their answers to support the repetitive (process)
of voting individual questions.
Following the idea of only providing the required information, these two processes

would thus motivate the creation of three interaction endpoints in the client-server
based architecture: A first one to provide the list of questions, a second one to do the
same concerning answers, and a third one to support the combined view.
Effectively, the process orientation thus influenced the interface design between

client and server. While this is not necessarily good or bad, it is definitely something
to be aware of with regard to the next chapter covering the concepts of REST.

Data Driven

Along with business processes usually comes respective data - tons of it [Mic14] -
which is persisted for years. Thus, it is not uncommon for data to outlive the envi-
ronment it has initially been created in. This includes not only hardware components
or programming language choices but potentially entire application (stacks) as well
[Fow02].
Given that the data is created and used by business processes, you can anticipate

users to place convenience and consistency related requirements on application (data)
given that they have extensive knowledge of the domain the application acts in.
With regard to example application presented in chapter 1, a speaker deleting a

questionnaire could for example expect the application to clean up dependent entities
such as questions, answers and votes.

Security

Enterprise applications typically feature a high emphasis on security [Ora12]. Rea-
sons for that are not only the implementation of business requirements, but also the
protection of competitively valuable data as well as the adherence to legal constraints.
Hence, these applications normally implement a sophisticated access restriction sys-

tem (e.g. represented by roles and permissions) and require users to authenticate
early on.

Integration

Even though security is one the primary concerns, enterprise applications are almost
never developed and operated in isolation. Instead, they are usually accessed con-
currently by many users from a variety of devices and interact with other - internal
and external - machines, applications and data all being distributed across the net-
work [Mic14]. Thereby, involved systems have most likely been built at different times
using different technologies and collaboration mechanisms [Fow02].
In this regard, a common problem is known as conceptual dissonance [Fow02] mean-

ing that involved parties (e.g. organizational units or cooperating companies) have

7

2. Fundamental concepts

contradictory definitions of the same term. Due to this conflict potential, integration
always needs some degree of isolation. This is to allow applications to remain au-
tonomous and especially to deal with changes locally without disrupting the whole
landscape [WFV00].

Maintenance

Business environments are constantly influenced by different aspects such as technol-
ogy, organizational restructuring, competitors or market changes [Cum02]. For the
most part, changes at this level impose the same on respective enterprise applica-
tions, i.e. maintenance.
However, implementing the required adoptions is mostly anything but easy which

leads to a steadily growing maintenance backlog. In many cases, involved problems
are associated with inflexible design generated by ill-designed information structures
[AK10] or exaggerated coupling of business logic and technical details [Cum02].

2.2. API Design
As described in the last section, integration is a vital part of enterprise applications.
In the context of software development, the standard way to do that is to define an
API which the accessing component can use.
Due to this prominent position, APIs have the potential to be either among an orga-

nization’s greatest assets or liabilities [Blo07]. While a well designed API may signifi-
cantly increase development productivity, an ill-designed one literally undermines the
work of developers. Unfortunately, creating an API of the first kind is rather difficult,
while creating one of the second kind is very easy [Hen07]. But what distinguishes a
good API from a bad one?
Good APIs are often described as something that “did not throw any more rocks in

my way” or “simply did what it was supposed to do”. Both these descriptions actually
outline an important aspect: APIs are always used by someone to achieve a specific
goal. Consequently, the quality of an API directly depends on how well it has been
fitted to (or fits in - depending on the perspective) the environment it will be used
in [Hen07]. This in turn implies that there is no way to describe exactly how a well
designed APIs looks like in general.
Respectively, available sources typically list a selection of rather abstract quality

attributes to be found in such APIs according to their experience. An example of such
a list is shown in figure 2.2. How to actually achieve, prioritize and balance these
properties is left to the API designer (after all, design is all about making trade-offs
[CA08]).
Covering all available characteristics would exceed the scope of this thesis. Instead,

the following focuses on a few attributes which appear to have been especially em-
phasized.

Minimalism

Surprisingly, one of the best ways to design a good API is minimalism. This means
to leave out any feature, functionality or other exposed detail which is potentially
unstable, not required or not fully clarified. In other words:

8

2.2. API Design

• Easy to learn

• Easy to use, even without documentation

• Hard to impossible to misuse

• Easy to read and maintain code that uses it

• Sufficiently powerful to satisfy requirements

• Easy to evolve

• Appropriate to audience

Figure 2.2.: Characteristics of a Good API by [Blo07]

When in doubt leave it out [Blo07]

Though the approach may seem counter-intuitive at first, it helps to avoid a variety
of problems. This is because you cannot readily change or remove anything that has
been published by an API in a non-backwards-compatible manner.
Doing it nonetheless will either break any other system that uses the API or prevent

it from updating to newer versions and thus from receiving any further, compatible
additions and improvements. This may not be that much of a problem if the API is
only used by few consumers. But considering the previously described integration
of enterprise applications or environments like the Web, there is a high chance that
efforts escalate quickly.
What is worse about ill-designed published details of an API is that they often cause

the creation of workarounds and wrappers. The more widely the API is used, the more
of them will appear. Even though its creators typically invest much time and effort to
mitigate the drawbacks of the original API, these wrappers often end up being fairly
complex and introduce design flaws of their own. A very good example of such a
situation is described by [Hen07] based on the .NET socket Select() function (prior
to version 2.0).
One approach which aims to avoid or at least diminish these consequences is using

a deprecation strategy. This however forces users to deal with both the deprecated
and the replacing feature which increasingly worsens the tangibility of the API. In the
worst case, users may even disregard the replacement due to not being able to find
and/ or comprehend the reasons for the underlying change.
On the contrary, one could point out that exaggerated minimalism may cause an API

to lack essential features. However, this should rarely be a problem given that, in such
a case, you know about the potential problem, thus are able test for it and add it later
after its necessity has been assured.

Sufficiently powerful

A characteristic which is somewhat opposing tominimalism is the requirement of mak-
ing an API sufficiently powerful [Blo07]. One thing that appears to be often neglected
in this regard is that sufficient power applies to both success and error cases. A well

9

2. Fundamental concepts

Figure 2.3.: How to print a DOM document in Java: An example of an insufficiently
powerful API [15]

designed API hence should provide appropriately detailed and programmatically pro-
cessible error information [Hen07].
The term sufficient thereby highlights the fact that the power of an API can be mis-

matched in two ways: While insufficiently powerful APIs typically require users to
manually perform steps the API could do for them, overly powerful ones usually pro-
vide a great number of parameters for each step which are mostly not changed by or
relevant to the user. Both cases thus produce lots of boiler code for tasks being per-
ceived as simple by the user. A rather infamous example of such a situation is shown
in figure 2.3.
For the most part, such verbosity indicates that the API has been designed without

adequately contemplating its usage scenarios. One approach to avoid this problem is
to let non-involved developers or known future users specify how they would expect
the API to work [CA08].
While being the solution to one problem, this approach can just as well be prob-

lematic: Overly focusing on the requirements of some users, may prevent others from
effectively using the API. In this regard, doing three different implementations against
an API is hence considered to be a good way to ensure its re-usability [Tra95].
However, there is still the problem of perceived complexity: Just because a task is

considered simple, is does not mean it actually is. If that is not the case, it remains a
design decision whether or not or how complexity should be made visible to the user
(e.g. performance heavy operations like recursive tree access).

Intentional Consistency

A good way to reduce the general complexity of an API is to design it intentionally
consistent due to the fact that it allows users to transfer knowledge (e.g. relationship
terms or data structures) they gained about one part of an API to other ones [Hen07].

10

2.3. RPC and enterprise application development

This reduces the memory load required to learn and interact with the API and thus
lowers its perceived complexity - a quality that is associated with well designed human
computer interfaces (HCIs) since quite some time [MN90].
Respectively, the methods append, update and delete of all entities shown in figure

1.2 are named identically. Naming one of them add, replace or remove would only
force users to learn two terms to do the same thing. It might even confuse them as
they could suspect one of the methods to do something different.
The flip side of intentional consistency is that APIs should never employ the same

names or structures for things having deviant purposes as such design mostly causes
errors which are very hard to trace. This is because users typically disregard the
actual origin of the error in consequence of assumed consistency.
A good example for such a case are the Unix methods strncopy and bcopy which

have inverted source and destination parameters [Blo07]. Deducing the behavior of
one function based on the other would thus result in copying a random piece of memory
while expecting specific content. As the result is most likely garbage, the error is not
easy to understand as long as the involved function is not suspected.
On a larger scale, consistency thus should also exist between multiple APIs because

people generally do not want to repeatedly unlearn one API just to learn another
[Blo07].

Documentation

As evident from the part about consistency, misunderstandings when dealing with an
API cannot be avoided solely by good design. Given that especially enterprise applica-
tions are highly connected and integrated 2.1, there are also possibilities for concep-
tual dissonances, i.e. incompatible definitions of concepts or terms [Fow02].
An example for such a case is the answer entity displayed in 1.2. For the purpose

of the application discussed in chapter 1, the entity represents a predefined answer.
In another context, the term answer could as well refer to the response to a question
given by a participant. Without documentation, the “weighting” attribute thus would
likely seem pointless and confusing.
Beyond that, it can be hard to anticipate how exactly users will interact with an API:

“People using your API will be doing things so complicated, you cannot pos-
sibly let them do everything without needing to check the documentation.

One way to think about it, is that lines of code can be really powerful because
one line of code can save hours and hours of work if you are doing it manually.

Documentation has the same power. One line of great documentation in the
right place can save hours and hours for just one consumer of your API. It
might tell them that something is possible. That they do not need to build it
themselves. That all they need to do is use this method they’ve never heard
of” [Lac13].

Due to all these reasons, a good API must not only be well designed but also equally
well documented.

11

2. Fundamental concepts

Figure 2.4.: Basic RPC structure and interaction based on [Soa92]

2.3. RPC and enterprise application development
As mentioned in section 2.1, most (enterprise) application claiming to be REST com-
pliant are actually not. Instead, they are usually accused of rather following the RPC
paradigm [Fie08]. This is why this section covers the basics of RPC and describes how
its ideas may end up being applied in what was said to be a REST-compliant API.

RPC

Basically, RPC allows a component (client) of a distributed system to access functional-
ity of another, remote component (server) as if it was local [Soa92]. In object-oriented
languages, this pattern is typically extended by way of allowing the execution of meth-
ods of an object instead of independent procedures (e.g. Remote Method Invocation
(RMI) [Ora14]).
In both cases, the client gains access to remote functionality by interacting with a

local stub (client stub). Commonly, execution of the calling thread is thereby blocked
until the result of the remote execution is returned by the stub.
When invoked, the client stub transforms the call into a message. By means of the

RPC support of client and server, the message is subsequently delivered to a stub at
the server (server stub). Based on the received message, the server stub executes the
respective procedure (or method) and transforms the result into a message.
Subsequently, this message is sent back to the client stub which rebuilds the result

and returns it to the calling thread (the complete interaction sequence is shown in

12

2.3. RPC and enterprise application development

1 public interface IResource extends Remote {
2
3 class Questionnaire {
4 /**
5 * Unique identifier
6 */
7 private long id;
8 private String analysisDelay;
9 private String identifier;
10 private String title;
11
12 }
13
14 public Questionnaire getQuestionnaireForId(long id)
15 throws RemoteException;
16 }

Figure 2.5.: Example RMI server interface

figure 2.4).

Server interface

To allow for a successful interaction, client and server must agree on a common con-
tract. In case of RMI, they thus have to implement the same interface.
In addition, the caller needs to know the address of the callee as well as the name of

the procedure (or class and method name respectively) to be executed. For the most
part, this information is not provided dynamically to the client, meaning that it is either
hard-coded or read from a configuration source during start-up. Correspondingly, the
full set-up for remote access is handled during the initialization phase of the client.
This allows developers to solely focus on procedure or method contracts which are
known at compile time.
As a result, clients are programmed based on accurate knowledge and expectations

regarding possible interactions, data that is sent and returned per interaction, and
how retrieved data can be used subsequently. Considering the interface displayed in
figure 2.5, a developer would thus expect at least two things:

• There is a class called Questionnaire which always has the specified attributes

• The id attribute of the questionnaire is unique

• There is always a method called getQuestionnaireForId which takes an id in form
of a Long and returns one object exactly matching the specified Questionnaire
class

The bigger part of that is probably not surprising. However, being explicitly aware
of RPC based interactions should help to better understand not only parallels to REST-
labeled, yet RPC accused application, but also differences to truly REST-compliant
ones.

13

2. Fundamental concepts

1 {
2 "id": 1,
3 "analysisDelay": PT5S,
4 "identifier": "SE101SS14",
5 "title": "Lecture evaluation: Software Engineering 101 (SS14)"
6 }

Figure 2.6.: An example for RPC based response representation

Web based enterprise applications

When developing a typical client-server, Web-based enterprise application, client de-
velopers usually know where the server component will be deployed both during de-
velopment and after release. This may be because the application will receive its very
own domain or because the same machine will host both the client and the server
component (which makes the address available via context). The remaining, relative
paths of web based endpoints are typically hard-coded in the client - either completely
or in the form of templates.
Given that enterprise applications are business driven, data is normally received or

submitted to support a specific process. Hence, you can assume that clients implement
assumptions regarding sent and received data; For instance based on the process step
underlying each view.
Altogether, the resulting interaction model is indeed quite similar to RPC: Available

operations, their contracts and transmitted data sets are well known at compile time.
Respective servers thus commonly send data representations such as displayed in fig-
ure 2.6 because their clients know and expect everything else as specified at compile
time. As a result, the mentioned representation does not contain any information such
as an indication of it actually constituting a questionnaire.

14

3. REST from a conceptual perspective
Now that the fundamental concepts have been covered, this chapter addresses the
conceptual side of REST. Its goal is to explain everything you need to know to un-
derstand REST except for implementing hypermedia and self-descriptiveness which is
covered in the next chapter.
For this purpose, the chapter first explains REST in general: What it is, where it

comes from and specifically, what it is not. After that, the chapter discusses the core
concepts of REST which is followed by covering its well known constraints. Last, the
chapter discusses a few common misconceptions concerning REST including the so
called pragmatic REST style.

3.1. Defining REST
Originally, REST has been developed “to create an architectural model for how theWeb
should work, such that it could serve as a guiding framework for the Web protocol
standards” [Fie00]. Nonetheless, REST seems to be most known for its constraints
which form the REST architectural style.
To understand REST more in depth, three things are useful to know up-front: The

concept of an architectural style, the architectural properties considered to be essen-
tial according to REST and especially what REST is not.

3.1.1. Architectural Style

Figure 3.1.: Abstraction levels in context of REST

15

3. REST from a conceptual perspective

Basically, an architectural style is an abstraction of conforming architectures which
helps architects to communicate architecture in general or details concerning a spe-
cific one [Fie07]. Consequently, it represents the second abstraction level above the
implementation one [FT02] (see figure 3.1) which is why respective discussions and
definitions may not always be very concise.
Furthermore, an architectural style consists of a coordinated set of constraints con-

stituting design choices at the level of architecture [FT02]. Thereby, each constraint
“induces certain (good) architectural properties at the expense of certain (bad) trade-
offs” [Fie07] (figure 3.1 shows the design decisions of the REST architectural style).
The fact that the constraints of an architectural style are coordinated has one impor-

tant implication: Designing an architecture while ignoring one or more of them will
change the solution significantly.

REST as a design principle claims to create designs that have positive prop-
erties, but it is unlikely that these properties can be expected with designs
that ignore certain key constraints [WP11]

In addition, architectural styles commonly do not cover all design decisions. Corre-
spondingly, “REST only elaborates those portions of the architecture that are consid-
ered essential for Internet-scale distributed hypermedia interaction” [FT02]. Conse-
quently, it is important to understand “how REST sees the Web”.

Constraint Promotes At the expense of
Client-Server UI portability

Simplified server
Multiple organizational domains

Stateless Simplified server
Scalability
Reliability

Efficiency

Caching Reduced latency
Efficiency
Scalability

Reliability

Uniform interface Visibility
Independent evolution
Decoupled implementation

Efficiency

Layered system Shared caching
Legacy encapsulation
Simplified clients
Scalability
Load balancing

Higher latency

Code on demand Simplified clients
Extensibility

Visibility

Table 3.1.: Effect of REST’s constraints based on [Moo10]

16

3.1. Defining REST

3.1.2. REST’s view of the Web
As described by [RAR13], REST identifies four key architectural properties which are
illustrated in figure 3.2. These are low entry barrier, extensibility, internet scale and
distributed hypermedia.
In general, these properties are considered to be the main reason for the success

of the Web which is why they are prioritized over others. Interestingly enough, you
can argue that, in case of Web, the first three ones mostly pose requirements while
the fourth property describes a solution for them - which however is based on a set of
requirements as well.

Figure 3.2.: The key architectural properties of the Web

Low entry-barrier

Low entry-barrier is straight forward: Nobody likes to use things whose interaction is
overly complicated. This is especially true for the Web because it is based on voluntary
participation [Fie00]. Its low entry-barrier is one the main reasons the Web has be-
come that successful. All you need is a browser, no case-specific tools or knowledge of
available commands. You can figure out everything else on the way because websites
are human readable.

Extensibility

Extensibility refers to a system’s ability to change along with its requirements: No
matter how well a system may have been designed to match its initial requirements,
at some point, the latter will have changed to such an extend that the initial design
is no longer sustainable. In the long run, a system which is not capable of adapting
to changing requirements is doomed because its former users will quickly leave and
search for a replacement [RAR13]. As explained in the last chapter, this is also a major
concern with regard to enterprise applications.

A system intending to be as long-lived as the Web [which has been around
for more than 20 years] must be prepared for change [Fie00].

This is why REST promotes the idea of discovering things like resource identifiers,
representation or interaction possibilities at runtime: Anything a client is able to de-
termine dynamically at runtime can be changed without breaking effects as long as it
semantically stays the same or if the client is capable of understanding the new variant
1.
1In some way this is an adoption of the minimalism principle given that you try to reduce the amount of
information published at design time

17

3. REST from a conceptual perspective

Internet-scale

Internet-scale describes that sort of scalability which has anarchic traits [RAR13]. The
sheer number of clients and servers makes it impossible to keep track of each other
beyond the scope of a communication (that is a session). As a consequence, compo-
nents of the system will evolve independently as they see fit - coordinated upgrades
would not work anyway.
A system which is to remain viable in such an environment thus has to provide the

means to maintain old implementations along new ones without preventing new imple-
mentations from making use of their extended capabilities [FT02]. Otherwise, clients
of old implementation would break upon every change or the system would lack ex-
tensibility, both of which, at some point, would mean the end of the system.
Due to the scale of such systems, it is usually no option to deploy changes in a big

bang fashion. As a result, they also have to support “the gradual and fragmented
deployment of changes within an already deployed architecture” [Fie00].
Respectively, every public Web API faces this problem: Generally, there is no way

to tell how exactly and when clients will interact with it. To some extend, this also
applies to larger enterprise APIs. If they are used by enough systems, you cannot
simply change them because it would break dependent systems. And for the most
part, it is also not an option to modify all these systems because there is no budget to
do so.
The result is very similar to theWeb: “Un-upgraded clients might stick around for a

long time” [RAR13].

Distributed Hypermedia

In typical client-server systems, the server manages information that is organized as
data (pieces of information [Fie00]). Furthermore, the server sets and exposes some
sort of static, specialized, design-time available interface explaining how clients can
obtain and manipulate data. A good example for such an interaction model is RPC (see
section 2.3).
In context of theWeb, this model is not feasible because it denies the server internet-

scalability and extensibility: Scalability of the server is limited as it has to deal with
the entire application load of all clients. Extensibility is restricted because you cannot
change said interface without breaking clients that are programmed against it.
To resolve this issue, the principle of distributed hypermedia (also known as the

hypermedia strategy) treats the instructions about what you can do with the data just
as the data itself [RAR13]. It intends server to send them to clients along with the data
which may even allow for their modification (e.g. to control their availability, add or
remove them). Just as (standard) information is organized as data, control information
is thereby organized as controls (a control could e.g. be the description of what would
otherwise be a specific method of the interface).
However, this change of interaction style has two important consequences:

Hypermedia is defined by the presence of application control information
embedded with, or as a layer above, the presentation of information [Fie00]

First, the interface between client and server no longer serves as a dedicated medi-
ator. There are no more specific methods or other means of interaction by which client

18

3.1. Defining REST

and server can ensure “to talk about the same thing”. This is why REST describes four
constraints in terms of an uniform interface to compensate for this effect.
Second, hypermedia clients cannot be programmed against specialized, design-time

available interfaces simply because there are none by definition. Instead, clients re-
ceive hypermedia documents at runtime containing all required data and controls.
Based on that, they subsequently have to figure out how to proceed. The “crux” in this
regard is that this approach has to work for human and machine-driven clients:

When I say hypertext, I mean the simultaneous presentation of informa-
tion and controls such that the information becomes the affordance through
which the user (or automaton) obtains choices and selects actions. Hy-
permedia is just an expansion on what text means to include temporal an-
chors within a media stream; most researchers have dropped the distinction
[Fie08]. 2

As a consequence, hypermedia lowers the entry-barrier in a mostly human-driven
client environment. Figuring things out is something that humans are quite good at.
Otherwise, the Web as we know it today would not work at all. If a human visits a
new website, he or she figures out what it is about as well as if there is something
interesting to do next. Should some content prove to be rather complex, a website
author can simply add some text to explain things.
But as soon as machine clients are involved, quite the opposite is true. Given that

machines are terrible at understanding instructions based on natural language, hyper-
media actually raises the entry barrier because you have to come up with ways to make
machines understand not only the structure but also the meaning of a representation.
As suggested by [RAR13], this is called the semantic challenge.
Altogether, “hypermedia [thus] isn’t a single technology described by a standards

document. Hypermedia is a strategy, implemented in different ways by dozens of tech-
nologies” [RAR13]. The main challenge with regard to implementing a REST API is
finding a suitable solution to address the semantic challenge. Details on how to do
that are covered in the next chapter after having established more context regarding
the conceptual side of REST.

3.1.3. What REST is not
To further specify what REST is, it is important to understand what it is not. The latter
includes things like a development framework, a (file) format or a protocol [RAR13].
In fact, a REST API should not be dependent on any single of these aspects though

a successful mapping to a specific choice may be dependent on the availability of fea-
tures such as metadata or (interaction) methods [Fie08]. For instance, the core HTTP
standard does not contain a satisfying possibility to partially update a resource repre-
sentation which is why the PATCH method was suggested [DLS10].
So, despite the fact that HTTP is the de-facto standard for realizingWeb APIs, REST

is especially not limited to or by the HTTP protocol [RAR13]. It works just as well with
other protocols such as the Constrained Application Protocol (CoAP) [SHB14]. Inter-
estingly enough, HTTP is not even fully REST compliant itself; For instance because
its messages “fail to be self-descriptive when it comes to describing which response
2Due to that, I will solely employ the term hypermedia in the remainder of this thesis

19

3. REST from a conceptual perspective

belongs with which request” [Fie00] (a constraint which is covered later in this chap-
ter).
Likewise, REST does not depend on a single format, such as HTML or JSON. From

the REST point of view, the latter does not even qualify as a proper format because
it violates the (sub-) constraint of resource identification. Instead, format employed
by an API should be chosen dependent on the type of data provided as well as usage
scenarios. In some cases, a more specific but also more restrictive format such as
ATOM [NS05] may be suitable while, in other cases, a more generic one such as the
hypertext application language (HAL) [Kel13] may be more sensible.
Apart from all that, it is essential to understand that REST is not a golden hammer

- despite the success of the Web. There are definitely cases in which designing an
architecture based on the principles of REST makes more or less sense.
Generally, the closer the target environment resembles theWeb, that is the architec-

tural properties covered in the last section, the higher the chance that a REST based
architectures proves to be beneficial. This is also why you can consider REST being
overhyped compared to its importance within Fielding’s dissertation:

My dissertation is about principled design, not the one true architecture
[Fie07].

3.2. Key concepts of REST

As shown in figure 3.3, REST essentially works based on three definitions: Identifiers,
resources and representations. Resources may have more than one resource identifier
as well as representations whereas the latter always refer to one resource.
Apart from that, REST features two types of states, namely application and resource

state, which are the reason for the concept of an application being significantly differ-
ent in context of REST.
Given their central role, these five concepts are discussed in depth in the following.

Figure 3.3.: Conceptual UML class diagram showing the relationship(s) between re-
sources, representations and resource identifiers

20

3.2. Key concepts of REST

3.2.1. Resource Identifiers
In one sentence, a resource identifier is a “dumb” key which identifies exactly one
underlying resource and can be used to access and interact with the latter. To gain
access, a resource identifier can be translated into network information by a specific
component called “resolver” [Fie00].
Within the Web, the common case is to retrieve a representation of the underlying

resource. Beyond that, resource identifiers correspond to URLs which can be trans-
lated by means of the domain name system (DNS).
Technically, URIs also qualify as resource identifiers because the original definition

by itself only requires unique identification. However, a resource that is only identified
but cannot be accessed fails to fulfill the (sub-) constraint of self descriptive messages
because there is no way to interact in the first place [RAR13]. As a result, it makes
sense to mention this requirement in context of resource identifiers as well.
The denotation of being “dumb” thereby relates to fact that a resource identifier by

itself does not have any meaning:

At no time whatsoever do the server or client software need to know or
understand the meaning of a URI - they merely act as a conduit [Fie00].

As a result, “resource identifiers do not have to look nice. They do no even have to
make sense to human eyes” [RAR13]. You could generate all resource identifiers by
using a random generator. In terms of an API, a client even does not need to know
any resource identifier at all except for the so called well-known entry URL (which
does not need to be the root URL of the server [WPR10]). From that point on, a client
should be able to figure things out as by the idea of hypermedia (just as you interact
with most websites). The reason for that requires a bit more explanation.

Stable identifiers are important

Given that centralized link servers are not an option at the scale of the Web, it uses
embedded resource identifiers and relies on authors to choose an identifier fitting the
identified resource [Fie00]. Consequently, changing resource identifiers is extremely
counter-productive because it breaks all references to the previous identifier. In the-
ory, there are no reasons at all to change or retract them except for insolvency of
the domain owner - “cool URIs don’t change” [W3C]. In practice however, things are
different.
As just mentioned, people prefer intuitive resource identifiers. But finding resource

identifiers that are both intuitive and valid for years to come is anything but easy
[W3C]. Often, their quality is proportional to the amount of time and money spent to
retain their validity [Fie00].

Extensibility is key

REST however targets very long lived systems such as theWebwhich has been around
for (more than) 20 years. So at some point, the requirements of initial system likely
have changed to such an extend that the initial design is no longer sustainable. For
that case, “servers must have the freedom to control their own namespace” [Fie08] so
that they implement the required changes. Otherwise they will be trapped forever by
(the shortcomings of) the initial design.

21

3. REST from a conceptual perspective

Requiring clients not to know resource identifiers (or other specifics) of an API be-
forehand thereby allows for the possibility of clients adapting to changes similar to
humans when encountering a new design of a website (though the former may prove
to be much more difficult than the latter due to the semantic gap).

Achieving balance

Despite all that, it does not mean that REST promotes servers to habitually change
resource identifiers or introduce breaking changes. In fact, quite the opposite is true.
As mentioned before, one of its essential goals is to support old implementation

alongside new ones whenever possible - but without loosing the ability to move on. If
a server has to come up with new identifiers because existing ones where not accurate
enough, it should always try to retain old resource identifiers while directing clients
to the replacements [RAR13].
This is even more important because, as of today, the majority of machine clients

is most likely not capable of adapting to these changes (also known as hypermedia
aware). Especially business application clients are usually build as scripts and hence
break upon most changes (possibly even intentionally because there are supposed to
fulfill exactly one purpose).
Furthermore, REST does not oppose to intuitive resource identifiers. The whole

point in this regard is that you must not rely on them being meaningful or clients
to guess correctly (after all, you could always guess wrong). So, because humans
normally prefer nice-looking URLs, a server should also not serve meaningless ones
[RAR13].

3.2.2. Resources
To understand the rationale behind resources, it is very helpful to know how URIs
(and thus resource identifiers) worked in the early Web. At that time, their definition
suggested that the author would identify the content being transferred (which would
correspond to theoretical resource). This in turn implied, that a resource identifier
would change whenever the content did, even if it effectively stayed the same [Fie00].
As a consequence, resource identifiers were anything but stable which, as mentioned
before, is the opposite of what you want in the Web.
To resolve that, resources were conceptualized as an abstraction consisting of all

these aspects of the transferred content which would not change over time: Its se-
mantics. Within the Web as of today, this idea is quite intuitive:
For instance, when you tell someone about a link pointing to a news article, you

normally do that because you deem its topic or (general) content interesting. For the
most part, the very exact words or layout of the article is subordinate as long as its
conveyed information stays the same. Likewise, you would probably refer someone
else to the application presented in chapter 1 due to what it allows to do, instead of
how it is presented to you.

Resources are stable semantics

Respectively, a resource is defined to be the semantics the author intends to identify
rather than the value (i.e. the transferred content) corresponding to those semantics

22

3.2. Key concepts of REST

at the time the resource is created (or any other particular point in time) [Fie00].
For the Web, this definition was additionally important because it allowed for the

identification of temporal services such as “the last recently created questionnaire”.
The prior definition of resource identifiers made that impossible, because there was no
possibility to come up with a stable identifier for the purpose (it would have changed
every time the identified questionnaire changed).
This is why the definition of a resource in general is not very concise. Whatever

a specific resource constitutes, depends entirely on what its author wants it to fulfill
(which is often related to its anticipated usage by clients). “A resource is anything we
expose to the Web, from a document or video clip to a business process or device”
[WPR10]. The only definite restriction is that it must have a resource identifier to
allow for interaction:

Do you remember that thing, the thing you had a while a ago, but then...
do you know what I’m talking about? Of course you don’t. I wasn’t specific
enough. I could have been talking about anything. It’s the same on theWeb.
Clients and servers can only talk about something if they can agree on a
name for it. On the Web, we use a URL to give each resource a globally
unique address. Giving something a URL turns it into a resource [RAR13].

Apart from that, there is only a single, yet important premise:

Identifiers should change as infrequently as possible [Fie00]

After all, this has been the reason for conceptualizing them as an abstraction in the
first place. Hence, storage objects do not qualify as resources [Fie00] because they
are technology dependent which makes them susceptible for changes. In addition,
they rarely capture the entire semantics (e.g. possibly exposed behavior).

3.2.3. Representations
Given that resources were defined as abstractions, another concept was needed to
comprise and transfer the previously mentioned content - in other words to explain
the state of the resource: Representations.
Following the theme of the definition of resources, REST defines “the things that are

manipulated to be representations of the identified resource, rather than the resource
itself” [Fie00].
This separation of resources and representations has two main benefits. First, it en-

ables a server to provide multiple, equivalent representations (over time or in parallel)
via the same identifier instead of requiring multiple, unstable ones. Second, it allows
the server to manage its internal instance of the resource, that is its implementation,
independently from what clients get to see of it (namely representations).
Due to both, a server can change its implementation as well as adapt to emerging

formats as needed without affecting its client in any way [Fie00]. The popularity shift
from XML to JSON is a good example in this case because APIs committed to XML had
many problems (or were unable) to change without breaking old clients that stuck to
XML.
But what is a representation more specifically? As evident from the explanation so

far, a representation belongs to exactly one (underlying) resource, but the latter can
have more than one representation [WPR10].

23

3. REST from a conceptual perspective

Representations can have many forms

Generally, a representation is a - to some extend - machine-readable document con-
taining any information about its underlying resource [RAR13]. Representations of the
same resource can vary in many aspects, for example format (XML, SVG or even SQL),
scope (e.g. preview vs. detailed) or language [RAR13]. In this regard, the format is
often also referred to as media type.

The Web doesn’t prescribe any particular structure or format for represen-
tations” [WPR10].

Consequently, representations may differ quite drastically despite belonging to the
same resource. For instance, the preview representation of a questionnaire may con-
tain much less state information than a detailed representation.

Representations convey state

Furthermore, representations serve two distinct purposes which highlights the way
components of a REST based system communicate: Instead of calling operations of
specialized interfaces, they exchange messages, that is, representations combined
with an intent implying the current or intended state of the underlying resource. As
these intents are standardized, the details of how a server may accomplish bringing
a resource in the desired state is purposely abstracted by what is referred to as the
uniform interface [Fie00].
As a result of this model, a client only deals with representations, it never sees or

interacts with a resource directly [RAR13]. Correspondingly, you can also define a re-
source as the abstract interface constraining the representation based communication
with the server:

There are no resources on the server; just mechanisms that supply answers
across an abstract interface defined by resources. It may seem odd, but
this is the essence of what makes the Web work across so many different
implementations [Fie00].

Nevertheless, representations are required to communicate the semantics of the
underlying resources “indirectly”. Otherwise, a client would deal with the state of
something it could not understand. In addition, it would be unable to differentiate one
resource from another which would violate the requirement of resource identifiers
uniquely identifying an underlying resource (within the Web this is referred to as an
URI collision):

If the representation communicates the state of the resource inaccurately,
this inaccuracy or ambiguity may lead to confusion among users about what
the resource is. If different users reach different conclusions about what the
resource is, they may interpret this as a URI collision [W3C04]

So, how is a client supposed to understand representations and deduce the under-
lying resource? The answer to this question is self-descriptive messages and hyper-
media. As mentioned in section 3.1.2, I will defer its detailed coverage until the next
chapter.

24

3.2. Key concepts of REST

3.2.4. Resource & Application State
The last concept discussed in this part is the distinction of resource and application
state which is actually an outcome of the stateless constraint.
Understanding both is important to see how REST based applications actually work.

For that purpose, figure 3.4 shows an overview of their roles and interactions which
is discussed in the following.

Figure 3.4.: The role and interaction of application and resource state in context of
REST

Resource State

In large parts, resource state has already been covered in the last section: Primarily,
it is stored and managed by the server; But a client can interact with it, that is view
or manipulate it, by obtaining or sending representations [RAR13].
With regard to wording, resource state usually addresses the state of all resources

of a server. Single resources appear often to be addressed as “the state of X”.

Applications according to REST

To understand the concept of application state, it is crucial to first understand the
concept of an application with regard to REST.
This is because in REST-based system, servers (are meant to) solely offer various,

logically connected resources as well as interaction possibilities. They do not partic-
ularly “care” how these resources might be used. Within the Web, this “attitude” is
actually an advantage because it leaves a high chance that interaction is not restricted
with regard to a specific purpose:

25

3. REST from a conceptual perspective

It is the unexpected re-use of information which is the value added by the
Web [Ber06]

By contrast, having a “particular usage pattern of resources” [Sin14] - possibly pro-
vided by multiple servers [Fie00] - is exactly what makes up an application. So in
REST-based systems, the responsibility of providing an application (experience) per-
tains much more to the client than to the server [Sin14]. In this regard, servers are
often not much more than data providers which a client might replace over time as-
suming that there is no relevant, persisted data at a specific server.

Application state

Respectively, application state is all the information maintained at the client side while
trying to accomplish a goal. “This information is built up piece by piece based on the
resource state that is transferred between client and server” [Sin14].
As a result, the server can somewhat influence the application state [RAR13] given

that the client - to some extend - is limited by the possibilities of its provided represen-
tations. But apart from that, everything else is controlled by the client. How long and
how many representations it keeps active, context information build up based on the
received representations (browser history, authentication or other, domain specific in-
formation), or where the client is in its process towards said goal, all that falls to the
control and responsibility of the client.
In this regard, browsers usually replace the bigger part of their application state

whenever the user accesses a new website (i.e. resource). By contrast, a client imple-
mented to support the voting use case explained in chapter 1 would successively load
(and keep) the combined information about the respective questionnaire including its
questions and answers even if it is distributed across multiple resources. As a third
example, a client implementing the manage use case might “only” load all question-
naires the speaker created but additionally keep previously obtained authentication
information to do so.
Beyond that, application state is often associated and thus limited to a single session

of the application the client realizes. But as illustrated by the browser history example,
the client might as well persist parts of its state.

Application vs. resource state

If parts of the application state are important enough, they can alternatively be imple-
mented as resource state on the server. This is usually the case if a single user would
repeatedly access the same information (possibly frommultiple devices and thus client
instances) or if multiple users are to access shared information.
A good example in this case is the shopping cart scenario. You could implement

the current state of the shopping cart - that is which items it currently contains - as
application state. As a result, the client would need to keep track of the shopping cart
and, at some point, would interact with some sort of purchasing resource to actually
buy the items. By contrast, shopping carts are usually implemented as resource state
(and thus as a resource) because it allows for all sorts of convenience features (e.g. a
user can shop over the course of multiple session or using multiple devices).
This is why in general - and corresponding to the rationale of defining resources -

anything important enough for the server to care should be realized as resource state

26

3.3. Constraints

instead of application state [RAR13]. How to make that decision in particular case
depends mostly on the domain background of the application as well as whether or
not you can influence resources provided by the server at all.

3.3. Constraints
Now that the foundation is covered, it is time to look at constraints of REST. Altogether
there are six architectural constraints. However, the most famous one, the uniform
interface constraint, in turn consists of four sub-constraints [RAR13].
Most of the other constraints are supposed to be well known and understood. Nev-

ertheless, there still seem to be various occasions in which they appear to be misun-
derstood or ignored.

3.3.1. Client-Server
The client-server constraint promotes separation of concerns by way of separating
user interface concerns from data storage concerns [Fie00]. Ultimately, the goal of
this constraint is to allow for independent evolution of system components [Fie00].
This in turn enables the system as a whole to cope with the anarchy characterized

by the internet-scale property (which it is to support). Consequently, the client-server
constraint does not imply at all that a client must know about the server interface
before runtime. In addition, the server should not provide resources which are tailored
towards a single client.
This is why I introduced the concept and example of process-driven applications and

views in the last chapter. Enterprise applications appear to have a tendency of defining
resources in way that suits the required information per process step. Respectively,
you can argue that this approach violates the client-server constraint because the
needs of the client (where the information is displayed) actually dictates how resources
are build.
Provided that you could assume many clients to interact with the API in the same

fashion, it would not be a problem because resources should actually be defined in a
way that supports clients interacting with the API.
However, enterprise applications - especially the ones not being publicly accessible

- often seem to be designed with a single client in mind. Altogether, the resource
design thus is driven by visualization concerns of a single client which has a high
chance of causing the definition of unstable resources (and thus identifiers): Every
time something in the user interface changes, the underlying resources are affected
as well. Consequently, the server effectively does not have control over its data.

3.3.2. Stateless
With regard to the previously defined key architectural properties of the Web, the
stateless constraint can be considered as a consequence of the internet-scale property:
As a server could never keep track of what its clients are doing, the clients have to
provide all required context as part of each request-response interaction.

27

3. REST from a conceptual perspective

Even though the constraint is normally only referred to as “stateless”, it primarily
restricts the communication between client and server which in turn affects the state
of said components:

Communication must be stateless in nature [...]. Each request from client
to server must contain all of the information necessary to understand the
request, and cannot take advantage of any stored context on the server.
Session state is entirely kept on the client [Fie00]

Figure 3.5.: Schematic illustration of stateful and stateless communication between
client and server

Based on this quote, the reader might wonder why section 3.2.4 only mentioned
resource and application state, but disregarded session state. This is because the def-
inition of application state is much wider than the one of session state: While session
state usually gets destroyed after the end of a session, a client may persist parts of its
application state for a subsequent session. As a result, the distinction of session state
and application state does not yield any real value which is why it usually seems to be
dropped. The session state is simply a part of the application state.
As mentioned in section 3.2.4, one important outcome of this constraint is the dis-

tinction of resource and application state. Apart from the scalability, the stateless
constraint also eases recovery on the server-side because there is no volatile state in-
volved. It thus benefits the simplicity and reliability of the server [Fie00]. Beyond that,
the constraint is usually relevant due to being violated. One of the most widespread
examples is HTTP cookies.

HTTP Cookies

In HTTP, cookies are often used to let the server track actions (which is a concern in its
own) or store non-server-persisted context information such as configuration choices
of each client [Fie00]. This is achieved by using the respective Set-Cookie response
header to provide an opaque string token (the cookie) to the client which is to (re-)
transmitted on every request.
On the one hand, cookies thus violates REST’s idea of the client being solely responsi-

ble for managing the application state [Fie00]. As a result, they often lead to confusion
if the client changes the application state in a way that does not include the server,
e.g. by using a back-button or history feature. In such a case, the state transmitted by
the cookie no longer matches the actual application state of the client. Consequently,

28

3.3. Constraints

the server would either have trouble dealing with the request or send an unexpected
response to the client, both of which tends to impede a successful interaction.
On the other hand, cookies are usually just an opaque string. This does not only

contradict the hypermedia strategy - and especially the self-descriptive messages con-
straint - because a client is unable to figure out its semantics (it could only guess). It
also makes cookies a concern with regard to security and privacy [Fie00].

3.3.3. Caching
The goal of the cache constraint is to “partially or completely eliminate some inter-
actions” [Fie00]. This is to balance the efficiency loss in consequence of the stateless
and uniform interface constraint. Correspondingly, caching is no early optimization in
REST based systems, rather it is an essential part of their design.
Specifically, caching helps to reduce bandwidth consumption, latency as well as load

on the server and can even hide network or origin server failures [WPR10]. Most of
these benefits are realized by placing components acting as shared caches between
clients and servers.
Whenever a cache is capable of answering the request, the latter never reaches the

origin server. This is also why polling actually makes sense in the Web: The more
clients constantly ask for the same resource, the faster in-between caches are filled
with the respective responses which counters the bandwidth limitation you would oth-
erwise run into [WPR10].
In addition, clients can further maintain their own, non-shared cache which, in an

ideal case, helps to totally avoid a request because the clients knows based on a prior
request that there are no changes (this is referred to as freshness [FNR14a]).

The most efficient network request is one that doesn’t use the network
[FT02])

For that to work, representations sent by a server must be “implicitly or explicitly
labeled as cacheable or non-cacheable” [Fie00] by either including cache information
or stating that the content is non-cacheable. In addition, requests sent by a client are
to bemade conditional by including the last-received cache information of the resource
in question.
Conditional retrieval (read) requests thereby allow a server or cache to skip re-

transmitting the same representation (the process of figuring this is out is called vali-
dation [FNR14a]). Conditional other (write) requests enable a client to ensure that the
involved resource state did not change since the client last obtained a representation.

Caching in practice

Though caching may initially sound relatively simple in theory, it is not that easy in
practice. With regard to HTTP, it is actually one the most complex parts [RAR13].
One the one hand, this is because protocols such as HTTP provide a variety of fea-

tures to control caching behavior in a fine-granular manner (see table 3.2 for a brief
and thus incomplete overview).
One the other hand, implementing the correct handling of these headers for things

other than files requires some effort: While today’sWeb servers handle caching of files
automatically, handling of script-based generated content must be provided for by the

29

3. REST from a conceptual perspective

Header Purpose

Server
Last-Modified Timestamp indicating date and time the representation was

last modified (one-second resolution)
ETag Opaque validator distinguishing multiple representations

(can be weak or strong)
Expires Timestamp indicating date and time until a representa-

tion can be used without contacting the server (one-second
resolution)

Cache-Control Directives for caches along the request/ response line

Client
If-Unmodified-Since The request is only fulfilled if the server timestamp is earlier

or equal to the one provided in the request
If-Modified-Since GET or HEAD request is fulfilled without sending a represen-

tation if the server timestamp is not more recent than the
one provided in the request

If-Match The request is only fulfilled if the server has a representa-
tion having the ETag provided in the request

If-None-Match The request is only fulfilled if the server has no representa-
tion having the ETag provided in the request

Table 3.2.: Brief overview of HTTP’s cache headers based on RFC7232 & RFC7234
[FNR14a]

implementer. Supposedly, this is why it is rarely done especially in non-public APIs. It
may simply be perceived as extra effort that does not pay off for quite some time.

Cacheable vs Non-Cacheable

By default, the response to a retrieval (read) request is cacheable while the
responses to other (write) requests are non-cacheable [Fie00].

Respectively, RFC7231 [FNR14b] defines that responses to HTTP HEAD and GET re-
quests are cacheable while responses to other requests - for the most part - are non-
cacheable. Responses to DELETE requests are non-cacheable because they commu-
nicate the intent to remove all current representation (hence there is nothing to be
cached anymore).
An exception is the response to a HTTP POST requests may be cached if they con-

tain freshness information though many cache implementations in practice just ignore
these requests entirely. In addition, while the response to a HTTP PUT request itself
must not be cached, the server can still send validation information as part of the re-
sponse to that request in case the representation sent by the client is not transformed
by the server in any way (which effectively means that the client can consider the
representation it just send as cached).

30

3.3. Constraints

Beyond that general distinction, there are a few scenarios in which even caching of
retrieved responsesmay not be beneficial. Here are a few examples based on [WPR10]:
• Resources being restricted to one user

• High-frequency “fire and forget” interaction

• The server needs to be aware of every of the clients requests
This first case is fairly simple: There is no real benefit in terms of scalability from

caching representation of a resource that are only accessed by a single client. In sec-
ond case, you can assume that clients are not interested in conditional write requests
(e.g. a logging resource). Even if you would realize it, clients would probably never
be able to have a non-stale state of the resource due to the constant interaction.
By contrast the third case is more interesting. Even if a server has to be aware of

every interaction with a specific resource, the resource itself should not be made non-
cacheable. Instead, the resource should reference another, tiny resource that clients
are to resolve when accessing the former one. By making this second resource non-
cacheable, a server can still keep track of the interaction without suffering scalability
drawbacks [Not13].

Things to avoid in terms of caching

Apart from that, there are a few things which may make it hard to cache content pro-
vided by an API which is why they should be avoided from a mere caching perspective.

Encryption First of all, encrypting messages effectively prohibits any cache between
client and server because the transferred representations cannot be inspected by in-
termediaries [WPR10]. Clients themselves as well as nodes within the trusted network
of the origin server can still make use of it though being much less effective compared
to publicly available shared caches. So from the point of view of REST, you should
provide unencrypted content where reasonably possible and avoid combining content
of both kinds in the same representation (e.g. static images) [Not13].

Authentication In addition, authentication protected content must be explicitly la-
beled as public within API because by default it must not be cached (this is one of
the applications of the Cache-Control directives [FNR14a]). With regard to enterprise
applications, this is a common pitfall because they feature early authentication as men-
tioned in the last chapter. Just as with encryption, resources thus should not combine
anonymously accessible content and such that requires authentication (or authoriza-
tion). In many cases, it also makes more sense to split both types of information by
way of resources.

Resource Design Furthermore, the benefit of caching is influenced by the actual re-
source and representation design. Typically, the Web features large-grain represen-
tation such as entire Web sites for which REST has been optimized [Fie00]. Conse-
quently, designing resources in a way that causes many resources to be changed at
the same time is likely to make caching ineffective because it significantly lowers the
chance that nothing changed upon a subsequent request. So, it should be avoided if
possible.

31

3. REST from a conceptual perspective

Representation Design Likewise, having too many, fine-granular representations of
the same resource is counter-productive due to the limited capacity of caches and
the potentially lower chance that clients actually request the same representation.
However, this is something enterprise applications seemingly often tend to do in con-
sequence of the process driven approach. With regard to application presented in
chapter 1, a speaker might for instance receive all attributes of a questionnaire, while
a voter might not receive the analysisDelay attribute because it is not rendered in
the respective view. If there are good reasons to retain this information from voters
(e.g. privacy related), it is better to separate the information into different resources.
Otherwise, such fine-granular distinctions should be avoided.

Embedding Embedding describes the idea of exposing a resource that combines the
information of multiple, related resources (for instance a questionnaire including its
questions). What is interesting about embedding is that it is often only used for ob-
taining representations from the server. When it comes to manipulating things, clients
usually interact with the resource underlying the part which is to be manipulated.
Hence you could argue that this approach is somewhat redundant.
From the perspective of REST, embedding is probably the most inefficient design

choice with regard to caching: It would be more efficient to make separate requests
only for those representations not already cached [Fie00]. This is because a resource
featuring embedding always changes whenever a part of it does which is why clients
have to re-retrieve a representation.
Especially when only using the resource featuring embedding for read purposes,

you frequently reload content of which the bigger part did not change which could be
avoided. In addition, you could also argue that not embedding makes an API easier to
understand because it leads to a better separation of concerns in terms of resources.
This is because messages would only contain one representation of a single resource
instead of multiple ones.
Due to performance reasons as well as probably the process orientation discussed

in section 2.1, embedding is however quite common within the Web and especially
business applications. Often, it is discussed in context of the so called “chattiness”
of REST APIs. But actually, most of the claimed performance issues are a result of
de-facto standard protocol HTTP instead of REST itself.

HTTP 1.1 vs. HTTP 2.0 The design HTTP 1.1 has some flaws with regard to how the
Web is used nowadays (see [Not] for details).
First, there is the head of line blocking problem: In HTTP 1.1, requests must be

fully processed in the order they arrive at the server - even with pipelining . As TCP
connections start with small transmission rates, an initial, big request will thus delay
(block) all following ones.
Second, it is often tried to compensate this problem by using multiple TCP connec-

tions. Yet, this does not only make it very difficult for clients to use them effectively
(which request via which connection), it also leads to network congestion events be-
cause all connection together exceed the available bandwidth of the client.
As a result, the transmission window of all underlying TCP connection is shrinked

which considerably increases the overall transmission time. Third, headers in HTTP
1.1 are very verbose. This is especially unpleasant in case of requests because they
often do not convey any payload; You mostly transmit headers around. Due to all that,

32

3.3. Constraints

a common goal in context of HTTP 1.1 is to reduce requests by various tricks such as
spriting, sharding or concatenating which effectively is embedding.
HTTP 2.0 promises to address these problems: “Making 20 HTTP requests, and

getting 20 responses, will be almost as fast as making one big request and getting one
big response” [RAR13].
As a consequence, HTTP 2.0 will allow for a much cleaner design which is why re-

spective decisions discussed later in this thesis will assume its availability. In addition,
making more fine-granular requests should no longer be that inefficient.

3.3.4. Uniform Interface
The idea of a uniform interface is to employ a single, common interface for all com-
ponent interaction instead of defining and using a dedicated one for each context or
application. In short, it favors interface generalization over interface specialization.
This is what distinguishes REST the most from other interaction styles such as RPC.
In section 3.1.2, I stated that the forth key architectural property, distributed hy-

permedia, resolves the requirements introduced by the first three properties while
introducing some requirements of its own (basically, to implement the hypermedia
strategy). Correspondingly, REST’s uniform interface describes how to design the
component interaction of a system that is to achieve these properties by using the
hypermedia strategy. It constitutes a design trade-off that prioritizes extensibility and
internet-scale at the price of efficiency and favors large-grain data transfer (as brought
up in context of cashing).

The trade-off, though, is that a uniform interface degrades efficiency, since
information is transmitted in standardized form rather than one which is spe-
cific to application’s needs of one being tailored to the individual application.
The REST interface is designed to be efficient for large-grain hypermedia
data transfer, optimizing for the common case of the Web, but resulting in
an interface that is not optimal for other forms of interaction [Fie00].

Specifically, REST’s uniform interface is characterized by four constraints which will
be covered in the following.

Resource Identification

For the most part, this constraint has been covered in context of resource identifiers,
resources and representations:

The definition of resource in REST is based on simple premise: Resource
identifiers should change as infrequently as possible [Fie00].

REST uses identifiers to identify resources, that is stable semantics, instead of rep-
resentations which is why this constraint is also referred to as addressability. The
distinction allows resources and their identifiers to remain stable over time while
the representations corresponding to a resource may change as needed. If a server
nonetheless needs to change resource identifiers, it should not simply delete the old
ones but instead forward clients to the new identifiers [RAR13].

33

3. REST from a conceptual perspective

Manipulation Through Representations

Section 3.2.3 stated that clients never see resources directly; They are only an in-
direction. Instead, client and server exchange representations corresponding to the
state of the underlying the resource. Depending on the intent sent along with the
representation, it constitutes either the current or intended one.
This constraint is the reason for this interaction model. It characterizes how com-

ponents communicate through the uniform interface.

The protocols are specific about the intent of an application action, but
the mechanism behind the interface must decide how that intention affects
the underlying implementation of the resource mapping to representations
[Fie00].

In this regard, it is important to note that REST does not restrict the general vocab-
ulary used to specify the intent (e.g. HTTP methods or status codes). Just as a REST
API is generally not limited to the HTTP protocol, it is also not limited to create, read,
update and delete (CRUD) operations realized as POST, GET, PUT and DELETE requests
[WP11]. POST is not even a good match for create because the former has no specific
semantics - it can do anything [RAR13].
Contrariwise, the uniform interface constraint only requires that there is a “general

and functionally sufficient set of methods” [WP11] as well as other required types of
intents. How many and which there are is subject to standardization. 3
Consequently, a REST API implemented with HTTP may just as well employ other

methods such as PATCH [DLS10] or LINK and UNLINK [Sne14] even though, in practice,
there are often technical hindrances: “If you need to talk to a variety of caches and
proxies, you should stay away from PATCH and other methods not defined in RFC 7231”
[RAR13]4. A few years back, firewalls apparently even blocked any HTTPmethod other
than GET or POST [Hyu+09].

Self-descriptive Messages

The self-descriptive messages constraint requires that any component of a system can
understand messages it receives based only on the content of the individual message.
In other words, “there’s no free-floating documentation nearby that client are also
expected to [know of or] understand” [RAR13].

The uniform interface must provide a way in which information exchanges
can “label” representations, so that no out-of-band information or prior
agreement is necessary to “understand” a representation that is received
[WP11].

This chapter already covered various examples of the constraint:

• Resource identifiers by themselves have no special meaning. However a repre-
sentation may explain what to expect of the underlying resource (section 3.2.1)

3This is why there is no partial GET as of now - there is now according standard [RAR13].
4The quote originally referenced RFC2616 which has been obsoleted by RFC7230 till RFC7235. The HTTP
methods are now covered in RFC7231

34

3.3. Constraints

• Representations have to contain a resource identifier linking to the underlying
resource (section 3.2.3)

• As the client solely manages its application state, each request to a server has
to contain all context information required to properly understand the request
(section 3.2.4

• Responses have to be explicitly labeled as cacheable or non-cacheable (section
3.3.3)

• Components of a REST based system have to employ standard vocabulary to state
the intend (and thus the semantics) of exchanged representations (section 3.3.4)

Apart from these examples, probably the most important concept with regard to
self-descriptiveness are media types which I briefly mentioned in section 3.2.3 and
will cover in depth in section 4.3.
Basically, media types identify the format of a representation. Knowing the format

allows a component of a REST based system to parse a respective representation and
to understand parts of its semantics (i.e. what it means) [RAR13].
From the perspective of an implementer, the self-descriptive messages constraint is

the most challenging and important one because, in case of machine-driven interac-
tion, it requires bridging the semantic gap.
Provided that all exchanged messages are truly self-descriptive, a client has to be

able to understand the full meaning of a message as well as comprehend the available
possibilities of what to do next. As mentioned before, the next chapter will cover this
topic in depth.

Hypermedia as the Engine of Application State

This constraint is likely the most notorious one of REST. Given that it does not have
the catchiest name, the constraint has received other names over time. Often, it is just
referred to as the hypermedia constraint, or simply connectedness [RAR13].
The constraint specifies how components of a REST based system are to interact:

Clients build up and adapt their application state based on representations they re-
ceive from one or multiple servers over time.
Due to self-descriptiveness (i.e. the hypermedia strategy), each obtained represen-

tation offers the client choices on what to do next. It can manipulate resource state on
a server or adapt its application state by obtaining a representation of another, related
resource. Effectively, hypermedia thus drives the application state of the client.
Interestingly enough, the hypermedia constraint is nothing you have to adhere to

directly. Rather, it is a reward for adhering the other REST constraints.

The hypermedia constraint is not a chore you must perform to be “REST-
FUL”. It’s the payoff for obeying the other constraints. It gives you exten-
sibility. The hypermedia constraint allows a smart client to automatically
adapt to changes on the server side. It allows a server to change its under-
lying implementation without breaking all of its clients [RAR13].

35

3. REST from a conceptual perspective

3.3.5. Layered System
Generally, the layered system constraint limits accessing components to only “see”
the top layer of the accessed component [Fie00]. This often makes interaction less
efficient because the accessing component cannot make use of implementation details.
In return, it however enables the accessed component to retain extensibility because
it is able to change lower layers as needed without externally visible effects.
In addition, the combination of uniform interface and layered system constraint has

one important effect: It allows for deploying intermediary components between client
and server which act and thus affect the communication in a transparentway [RAR13].
This is possible because all components of a REST based system hide their implemen-
tation details and share the same, uniform interface. In practice, there are mostly two
types of intermediary components: Caches and proxies (see figure 3.6).

Figure 3.6.: Schematic illustration of communication via a cache or proxy component

Caches

As mentioned in section 3.3.3, a cache stores representations sent through a network.
If a request gets routed through the cache, it may be able to respond to the request
instead of the origin server provided that it actually has, or can ensure to have, a cur-
rent response (representation). The latter is done by sending a respective validation
request to the origin server whose response is usually much smaller than the one to
the request of the client [FNR14a].
Overall, caches thus greatly help in reducing network traffic by moving content the

closer to the requesting clients the more it is requested [WPR10]. However, this is
also why implementing caches is not exactly trivial.

Proxies

Instead of handling a request received from a component (client or other proxy), a
proxy re-routes the request to another component (server or other proxy) returns the

36

3.4. Common misconceptions

received response to the requesting component. Depending on its purpose, it may also
manipulate the request or response in some other way [RAR13].
Proxies are employed for various purposes: To re-route requests to internal servers

(including load-balancing), strip or add encryption, compress or decompress the mes-
sage or to even translate and forward requests using another protocol [RAR13].

3.3.6. Code On Demand
The code-on-demand constraint is the only optional one of the REST constraints. It
allows clients to obtain code from the server which represents know-how on how to
process specific resources [Fie00].
The typical example for this case is combination of HTML pages and Javascript files.

Apart from that, the code-on-demand constraint does not have that much relevance
because security concerns usually oppose the idea of automatically downloading and
executing some code from a server (which is why Javascript runs in a sandbox). Hence,
(pure) Web APIs do not really use it [RAR13].
Nevertheless, there is one important misconception about the code-on-demand in

context rich-clients: The fact that scripts implementing the client were obtained by
code-on-demand does not mean that the communication between the rich-client and
its backing server(s) does not need to employ hypermedia.
Rather, the rich-client application should be considered as a machine-client of the

backing-servers - one among many. If this client is hard-coded towards the servers,
others inevitably are as well. As a result, the server looses the ability to change without
breaking everything not covered by code-on-demand scripts: You loose extensibility
while still being required to lock-upgrade the client scripts along with the server.

3.4. Common misconceptions
Before ending this chapter, this section covers two topics which seem to repeatedly
show up in context of REST: Version management and pragmatic REST.

3.4.1. Version Management
Every API needs to be changed provided that it has been running long enough. But if
the API and clients are not capable of hypermedia there is often a problem. You cannot
change the API without breaking its clients.

This is why public APIs change so rarely. You can’t change an API based on
API calls without causing huge pain among your users, any more than you
can change the API of a local code library without causing pain [RAR13]

Often, it is tried to work around this issue by versioning the API by way of URLs
patterns or prefixes. Thereby, clients are required to know the version they should
use. With regard the application discussed in chapter 1, versioned URLs of a specific
questionnaire could look like this:

• /api/v1/questionnaires/1

37

3. REST from a conceptual perspective

• /api/v2/questionnaires/2

For implementers, such an approach is only helpful if they know the implications
of v1 or v2 as well as which one is to be used preferably. Usually, this information is
provided outside the scope of the API - in other words, off-the-wire - which violates
the self-descriptiveness constraint of REST. If a client were to understand that both
URLs identify different versions of the same resource, the server would be required
to provide a respective representations explaining just that. Otherwise, the resources
underlying both identifiers would be considered to be completely unrelated.
Apart from that, you can also argue that this approach violates the resource identi-

fication constraint [RSK12]. This is because in many cases, the relevant semantics of
both versions and thus the resource stay the same. What actually changed were its
available representations. If that is not the case, there is probably an issue regarding
the definition of the resource which should be addressed as explained in section 3.2.1.
Despite that, you would probably have difficulties to comprehensively explain the dif-

ferences between multiple version. Often, the requirements simply changed without
any special reasoning that would be relevant and meaningful to the client.
In addition, clients are probably rarely interested in the fact if and how a resource

would be versioned. The only thing that is interesting to them is to figure out which
variant best suits their need. Given that REST already provides the concept of repre-
sentations allowing for clients to obtain different state descriptions of a resource, it
makes sense to employ it for the versioning use case as well.
Provided that you would get a client as far as being able to figure out the preferred

choice out of a fully-detailed or preview representation, the same should work for
multiple “versions” of that resource. Though in this case, the fact that representations
are versioned becomes an implementation detail and thus no longer matters to clients.
As an additional benefit, this approach also saves you from versioning the entire API
even if its bigger part did not change.

3.4.2. Pragmatic REST
As stated in section 3.1.2, the hypermedia strategy actually raises the entry-barrier
in case of machine-to-machine communication. Apart from the fact that hypermedia
generally is the least understood aspect of REST [RAR13], this is probably one of the
main reasons why enterprise application try to work around hypermedia.
The resulting style is often coined by the term pragmatic REST and usually involves

one of the following two approaches 5.

Drop Internet-Scale

If you are able to force-upgrade all clients at once, you can skip the internet-scale
architectural property required by REST. As a result, you no longer need hypermedia
while being able to provide a low entry-barrier as well as extensibility:
Implementers can read the documentation and apply changes when and however

they see fit. This approach is usually viable for internal, isolated applications that are
fully controlled by an organizational unit.
5Both are taken from [RAR13]

38

3.4. Common misconceptions

Drop Extensibility & Hypermedia

As a second approach, you can skip extensibility and hypermedia to allow for a low-
entry barrier and internet-scale.
As a consequence, changes to the respective API will almost always affect clients in

some way. As non-internal APIs tend to require internet-scalability, this represents the
most common approach for public Web APIs.

3.4.3. Why not to call it REST
Calling one of these approaches pragmatic REST causes one crucial problem: Its sug-
gests that it is just some style of REST while in reality it is something utterly different
because it ignores the very key concept:

REST APIs must be hypermedia driven [Fie08].

In this regard, the problem not necessarily is using a name for something that does
not match it. Rather, the problem is that many issues perceived in context of self-
proclaimed REST APIs actually seem to be a result of “cherry-picking” these con-
straints of REST that seem convenient. As a consequence, you end up with questions
such as:

• How do you design URLs with REST?

• Which HTTP methods are part of REST?

• Why are REST APIs so chatty?

As to my experiences during the preparation and work on this thesis, you can only
really understand the implications of pragmatic REST when having understood REST
itself. Using the term pragmatic REST just seems to cause more confusion and unnec-
essary problems on its own.
In lack of a better alternative, it might even be better to name the employed style

based on the respective protocol (e.g. HTTP API) as that would help people being
unfamiliar with REST finding respective documentation.
In the end and as mentioned in section 3.1.3, the question of whether or not REST

poses a suitable, sufficiently powerful solution for a specific context depends on how
closely the target environment matches the one of the Web. REST is not and never
was about the one true architecture [Fie08]

39

4. Implementing the hypermedia
strategy

Given that last chapter excluded implementing hypermedia and self-descriptive mes-
sages, this one covers these two topics in detail.
First, the chapter describes the general structure and semantic types found in hy-

permedia representations. After that, it explainsmedia types and how these influence
structure and semantics of a representation. Given that media types do not cover both
aspects completely, the last part of the chapter discusses ways to provide human and
machine-readable documentation for that purpose.

4.1. Elements of a hypermedia representation
As explained in section 3.1.2, hypermedia is about simultaneously presenting infor-
mation (structured as data) and controls. Consequently, you can split a hypermedia
representation into data and control elements which are normally referred to as hy-
permedia controls.
To a great extend, this distinction is introduced because available documentation

often seems to mostly focus on hypermedia controls. Presumably, that is because they
are what distinguishes hypermedia from other interaction styles. As evident in the
following, control elements usually also require more descriptive effort compared to
data elements.
Nonetheless, discerning both element types is very useful because it allows for a

much more structured approach concerning how to realize self-descriptive messages
which is covered later in this chapter.

4.1.1. Data Elements
Data elements convey that kind of information which you would also send along the
network in other interaction styles such as RPC. Clients usually retrieve them for some
sort of processing (e.g. to be rendered for users) or subsequently use them to describe
a change in resource state submitted as part of a request. Often, data elements are
hierarchically organized and represented as key-value pairs.
As an example, figure 4.1 shows a hypermedia representation which is a slightly

modified variant of the representation displayed in figure 2.6 and is based on the me-
dia type Siren [Swi14]. Altogether, it contains four data elements: id, analysisDelay,
identifier and title.
As defined by the format, values of the class attribute describe the nature of the

underlying resource (which Siren calls entity) based on the representation they are
found in. Thus, it constitutes what you could call meta data and does not qualify as a
data element.

41

4. Implementing the hypermedia strategy

1 {
2 "class": ["questionnaire"],
3 "properties": {
4 "id": 1,
5 "analysisDelay": "PT5S",
6 "identifier": "SE101SS14",
7 "title": "Lecture evaluation: Software Engineering 101 (SS14)"
8 }
9 // other representation elements
10 }

Figure 4.1.: Data elements based on the Siren hypermedia format

Depending on employed format and resource design, data elements may also form
more complex hierarchies to better express the semantics of the underlying resource.
For example, the analysisDelay could also be expressed as a combination of a time-unit
and a duration.
However, embedding overly complex data elements within others is usually consid-

ered to be a resource design smell. This is because it is often better to encapsulate
the embedded, complex data elements in a separate resource as discussed in section
3.3.3).

4.1.2. Control elements
As stated in section 3.1.2, the idea of hypermedia is to send both, data and interac-
tion instructions, to the client. Respectively, control elements constitute and organize
these instructions within a hypermedia representation. Due to the fact that REST
components exchange resource representations to interact, a control element always
contains at least one resource identifier which is usually identified by way of a href
attribute or property.
Based on the states concept described in section 3.2.4, you can characterize a con-

trol element as a description of a state transition, that is a mutually non-exclusive
change of application or resource state [RAR13]. Depending on the expressiveness of
the employed media type, a control element can either describe a single or a family of
transitions, for instance by using an URI-template.
Some transitions, for example in case of HTML’s and <script> tags, are sup-

posed to be triggered automatically while others fall to the choice of the client. As
an example of the latter, figure 4.2 shows the remaining part of the representation
displayed in figure 4.1 which contains three control elements.
The first control element, the append-question action, describes how a client may

append, that is to create and add, a new question to the questionnaire resource under-
lying the representation. It thus affects the resource and possibly also the application
state. The latter thereby mostly depends on the response of the server as well as
whether or not or how the clients incorporates it.
By contrast, the other two control elements (line 17 and 18) both solely describe

a possible change of application state. As defined by the Siren media type, a client
may retrieve a representation of the respectively identified resource by making a GET

42

4.1. Elements of a hypermedia representation

1 {
2 // other representation elements
3 "actions": [
4 {
5 "name": "append-question",
6 "title": "Appends a question to this questionnaire",
7 "method": "POST",
8 "href": "http://example.com/questionnaires/1",
9 "type": "application/x-www-form-urlencoded",
10 "fields": [
11 { "name": "content", "type": "text" }
12]
13 }
14 // other actions
15],
16 "links": [
17 { "rel": ["self"], "href": "http://example.com/questionnaires/1" }

,
18 { "rel": ["item"], "href": "http://example.com/questions/25" }
19 // other links
20]
21 }

Figure 4.2.: Control elements based on the Siren [Swi14] hypermedia format

request.
Thereby, the first control element identifies the resource underlying the represen-

tation (self). The second control element identifies a resource that is characterized
as an item belonging to the first mentioned resource. Due to its URL, a human user
might correctly anticipate that it in fact identifies a resource representing a question
belonging to the respective questionnaire.

Control elements may be manipulated

What is important to understand about control elements is that a client may interact
with them the same way as with data elements.
In the example shown in figure 4.2, a client would probably make a request based

on the append-question action to append a question to the underlying questionnaire
resource. Subsequently, the representation would probably contain an additional con-
trol element to access the newly created resource.
In another scenario, a client might just as well create the question by other means

and interact more directly with the control elements of the representation. For exam-
ple, a HTTP server might allow the client to use the LINKmethod [Sne14] to “manually”
add the question to the underlying questionnaire. Naturally, this in turn would require
a control element describing the corresponding request.
In many situations, a client would probably not be able to change control elements

such as the action one shown in figure 4.2. This is because changing things that in-

43

4. Implementing the hypermedia strategy

volve behavior on the server is usually much more implementation dependent and thus
cannot be handled that arbitrarily. Nonetheless, it is generally possible.

Categorizing control elements

Beyond that, controls elements are often further categorized in some way to empha-
size certain characteristics or to simplify their description. So far, two variants have
already been covered: Based on their effect on application or resource state as well
as based on groups defined by the employed media type.
In case of Siren, control elements which are purely navigational are grouped as links:

These describe transitions which only affect the application state and do not involve
any special behavior at the server. Anything not matching these criteria is grouped as
an action control.
In this regard, other media types such as Collection+JSON even define three cate-

gories: links, queries & (append-) templates [RAR13]). By contrast, others such as the
Hypertext Application Language (HAL) [Swi14] define none at all.
Whether or not to group control elements in most cases seems to be a trade-off of

enhanced readability (for humans) at the cost of backward-incompatibility in case one
of the groupings should prove to be inconsistent at some point in time.
As a third possibility, transitions - and thus the respective control elements - may also

be categorized based on their general execution semantics. The therefore employed
properties safe, idempotent and unsafe are probably best known from the context of
the HTTP methods (see [FNR14b]).

Figure 4.3.: Categorization of state transition types

In this regard, a state transition is considered safe if it only affects application state
(e.g. GET or HEAD). It does not have any side effects concerning resource state except
for things that are fully internally handled such as access counts or logging. Conse-
quently, the link control elements shown in figure 4.2 describes safe state transitions.

Triggering a safe state transition should have the same effect on resource
state as doing nothing at all [RAR13].

44

4.2. Semantic types of a hypermedia representation

Beyond that, a state transition is classified as idempotent if the change of resource
state (i.e. its side effects) stays the same regardless of the transition being triggered
exactly once or more than once (e.g. PUT or DELETE). Correspondingly, safe state tran-
sitions are always idempotent.
Due to this correlation, the term idempotent is often used to only identify idempo-

tent state transition that have side effects (e.g. in context of [ARF14]). A respective
categorization of state transitions is shown in figure 4.3.
Last, unsafe state transitions are such that have side effects and feature a differ-

ent outcome every time they are executed. In other words, they are neither safe nor
idempotent (e.g. POST). A good example for such a case is the append-question action
displayed in figure 4.2.

4.2. Semantic types of a hypermedia representation
Besides element types, a hypermedia representation can be discerned in terms of se-
mantics, namely protocol and application semantics - a distinction that has been sug-
gested by [RAR13].
While not being standardized at this time, the semantic types still offer a second, very

helpful view point to understand how hypermedia representations are structured.

4.2.1. Protocol Semantics
Protocol semantics comprise what you can describe, understand and thus do - based
on the employed protocol.
Thereby, it is essential for components of a REST based systems to agree on these

semantics ahead of time: Otherwise, they would be incapable of communicating and
interacting with each other [RAR13]. Without prior agreement on protocol semantics,
a client would not even know how to access a server via its well-known entry URL.
Beyond that, the concept protocol semantics is most useful in two contexts: Con-

trol elements and media types. As protocols revolve around rules of communication,
protocol semantics are usually irrelevant in context of data elements.

Control elements

In context of the control elements, protocol semantics explain how to trigger a single
or a family of state transitions (protocol-wise). Thereby, the latter is commonly realized
by describing URL templates.
With regard to the control elements displayed in figure 4.2, all control elements

grouped by the links property share the same protocols semantics: A client can make
a GET request to the resource identified by the value of the href property to obtain a
representation.
In case of the append-question action, its protocol semantics state that a client can

make a POST request to the identified resource as well as that it should use the media
type named by the value of the type property. As HTTP is incapable of describing a
payload beyond its intent, the payload specified by the content of the fields property
is not part of the protocol semantics of the control element.

45

4. Implementing the hypermedia strategy

In contrast to these examples, control elements can be very verbose concerning pro-
tocol semantics. In case of HTTP, a control element could also describe other headers
to be used (aside from the media type) or which status code to expect as part of the
response. Nevertheless, it seems that - by convention - most control elements only
state the minimally required features and leave remaining choices to the client (e.g.
the usage of cache headers) [RAR13].

Media types and representations

In context of media types, the concept of protocol semantics can be used to describe
the subset of protocol features which is supported by the media type in question.
For instance, the protocol semantics of HTML only allow for HTTP GET and POST

requests. The format does not provide a way for control elements to describe PUT or
DELETE requests [RAR13]. By contrast, the media type Siren allows its control ele-
ments grouped by the actions property to not only specify these four methods, but
also the PATCH [DLS10] method.
As another example, the protocol semantics of the media type HAL are limited in an-

other way. While it generally supports any HTTP method, the format itself is incapable
of specifying the method to be used (see figure 4.4). HAL expects this information to
be provided by another source of documentation [Swi14]. This could for instance be
a profile which will be covered in section 4.4.2.

1 <resource href="http://example.com/questionnaires/1">
2
3 <link name="append" title="Append a question to this questionnaire"

href="http://example.com/questionnaires"/>
4
5 <link rel="self" href="http://example.com/questionnaires/1"/>
6 <link rel="item" href="http://example.com/questions/25"/>
7
8 </resource>

Figure 4.4.: Example representation using the XML variant of the HAL [Swi14] hyper-
media type

Expressiveness of protocol semantics

As evident from these examples, the expressiveness (and conciseness) of protocol se-
mantics depends on the involved protocol or its feature. For example, the protocol
semantics of a HTTP DELETE request are relatively straight-forward: It deletes the
server-side mapping of the involved identifier to the respective resource meaning that
subsequent GET requests to the identifier will not yield a representation [FNR14b]. By
contrast, the protocol semantics of a HTTP POST request are completely arbitrary: It
basically means “whatever” [RAR13].
So to fully understand the contents of a hypermedia representation (e.g. in case two

control elements are indistinguishable based on their protocol semantics), a client or
human user also needs to understand the second type of semantics.

46

4.3. Media types

4.2.2. Application Semantics
The purpose of application semantics is similar to the one of protocol semantics: De-
scription, understanding and subsequently, action. But in contrast to protocol seman-
tics, application semantics, more precisely their vocabulary, is based on real world
terms instead of a protocol.
In addition, application semantics do not necessarily need to be and often are not

known ahead of time. A machine client or human user might be able to figure them out
at runtime or - e.g. in case of the former being a Web browser - might not be required
to deal with them.
Figures 4.1 and 4.2 already displayed multiple examples of application semantics:

The value of the class attribute, the title explaining the purpose of the append-question
action, the fields property explaining the structure and content of the payload to be
sent along to the server, or the value of rel property as part of the links control ele-
ments; All that describes application semantics.
What further distinguishes application from protocol semantics is that they can usu-

ally be found in context of data as well as control elements. By contrast, protocol
semantics are - for the most part - only relevant with regard to control elements. In
this regard, application semantics further help to distinguish control elements being
equal in terms of protocol semantics as demonstrated by the links control elements
shown in figure 4.2.

A representation’s application semantics explain the underlying resource in
terms of real-world concepts. Two HTML documents may use exactly the
same tags but have completely different application semantics - one of them
describes a person, and the other describes a medical procedure [RAR13].

Abstraction Level

While the concept of application state primarily comprises something that only con-
cerns the client, the term application has a different meaning with regard to applica-
tion semantics.
In this case, it rather refers to the abstraction level of these semantics. Similar as

to how the OSI layer abstraction model describe an application layer above the pre-
sentation layer [Mic15], application semantics are to be considered as an abstraction
above protocol semantics.
Respectively, application semantics of a control element could theoretically be incon-

sistent with is protocol semantics. As showcased in figure 4.5, you could for instance
specify the append-question action from figure 4.2 to be triggered by a GET request.
Generally, there is no common way to avoid such specifications. Instead, it is left

to the party having control over a resource to ensure that its published representa-
tions are consistent. Within the Web, this is anyway essential for API providers, as an
inconsistent API would most likely not be used by any client.

4.3. Media types
Now that the basics of a hypermedia representation have been covered, this section
addresses probably themost important aspect in terms of hypermedia and self descrip-

47

4. Implementing the hypermedia strategy

1 {
2 // other representation elements
3 "actions": [
4 {
5 "name": "append-question",
6 "title": "Append a question to this questionnaire",
7 "method": "GET",
8 "href": "http://example.com/questionnaires/1",
9 "type": "application/x-www-form-urlencoded",
10 "fields": [
11 { "name": "content", "type": "text" }
12]
13 }
14 // other actions
15]
16 // links
17 }

Figure 4.5.: Control element with inconsistent semantics

tiveness: media types. They are what brings together the four aspects discussed so far
in this chapter. In addition, they are the starting point in terms of self-descriptiveness.

To some extent, people get REST wrong because I failed to include enough
detail on media type design within my dissertation. That’s because I ran
out of time, not because I thought it was any less important than the other
aspects of REST [Fie08].

In short, a media type defines and thus allows to understand the syntax (i.e. the
format) as well as (parts of) the semantics of a representation [RAR13]. Due to their
purpose, media types must be known and understood ahead of time just like protocol
semantics. Otherwise, a client would be unable to discover the features of an API due
to being unable to parse obtained representations.

4.3.1. Aliases and term history
Originally, the concept of a media type was defined in a set of documents called multi-
purpose internet mail extensions, in shortMIME, whose latest version are RFCs 2045
[FB96a], 2046 [FB96b], 2047 [FB96a].
These documents defined an internet mail format header named Content-Type

which was to describe the nature and format of the data being transferred. The value
of this header was initially calledMIME type but later renamed tomedia type [Pos94].
Along with other concepts defined by theMIME documents, the Content-Type header
along with its MIME type value was later re-used by the HTTP protocol.
Given that HTTP is still the most prominently used protocol with regard to REST,

this is presumably why the terms format,media type,MIME type and content type are
often used interchangeably.

48

4.3. Media types

4.3.2. Media types and hypermedia types
What distinguishes a hypermedia type from a “normal” media type is that the former
comprises dedicate definitions for data and control elements [RAR13]. This is why
formats such as HAL, HTML or Siren are considered to be hypermedia types. They all
come with elements like links, actions or forms to define control elements.
Respectively, media types such as plain JSON or XML, more precisely applica-

tion/json and application/xml, do not qualify as hypermedia types: Their defini-
tions do not allow to distinguish an incidental resource identifier from an intended
one [RAR13]. In case of plain JSON, this problem is demonstrated in figure 4.6.

1 {
2 "links": {
3 "self": "http://example.com/questionnaires/1",
4 "item": "http://example.com/questions/25"
5 }
6 }

Figure 4.6.: Example of an attempt to specify control elements based on applica-
tion/json

Even if the links element looks identical to the one defined by Siren shown in figure
4.2, it does not convey the same information. This is because Siren explicitly defines
the content of that element to be control elements. As far as plain JSON is concerned,
it is just an arbitrary element. There is no way to tell whether or not these links
actually identify resources or how they are supposed to be used for hypermedia based
interaction.
Despite all that, there are still ways to use (non-hypermedia) media types like JSON

or XML to some extend. As demonstrated by the Siren hypermedia type, you can define
a new hypermedia type as an augmentation of an existing media type. Among other
things, this is indicated by the name of the media type.

4.3.3. Media type naming and structure
In the beginning, media type names were defined based on three concepts: A (top-
level) type, a subtype and optionally, a set of parameters. In consequence of two con-
ventions that arose over time, subtypes are now further distinguished in terms of two
concepts: Subtype trees and structured syntax name suffixes [FKH13].
Figure 4.7 shows these different parts of a media type name based on an example.

In addition, the following briefly covers each part.

Top-level type

The top-level type is more of a general categorization of the content being transferred.
This is why it must be selected from a list of standardized terms which is expected to
be extended quite rarely [FB96a].
For example, “the text top-level type is intended for sending material that is princi-

pally textual in form” [FKH13]. In context of APIs, probably the most relevant top-level

49

4. Implementing the hypermedia strategy

Figure 4.7.: Structure of a media type name

type is application: It is reserved for data to be processed by an application program
or such that does fit in any category such as image, audio or multipart [FB96b].

Subtype

The subtype specifies a particular format of the category described by the top-level
type. For example:

• text/plain - Text that does not have any formatting commands or directives

• text/html - Text based on the HTML format

• application/json - JSON based application content

In contrast to top-level types, they are the primary extension point for defining new
media types [FB96a]. As mentioned before, the original subtype is now conceptually
divided into a subtype tree, a subtype name and a structured syntax name suffix.

Subtype trees

Subtype trees further characterize a media type, for instance in terms of purpose or
usage context. Generally, they are represented as a prefix of the subtype name which
is terminated by a dot. An exception to this rule are media types that underwent an
internet standardization process such as the ones just shown. These are grouped in
the so called standards tree which must not have a prefix [FKH13].
As of today, probably the most commonly used subtype tree is vendor (vnd.). It char-

acterizes media types being used in context of publicly available products [FKH13]. A
respective example is the full name of the media type Siren which was used in figures
4.1 and 4.2:

• application/vnd.siren+json

Alternatively, there are two additional trees: Personal (prs.) and unregistered (x.).
The first one serves for experimental or non-commercially distributed media types.
The second one “may be used for types intended exclusively for use in private, local
environments” [FKH13].

50

4.3. Media types

Structured syntax name suffixes

The idea of a structured syntax name suffix is to define a new media type as an aug-
mentation of an existing one. According to [FKH13], the first media type of that kind
was defined based on XML by RFC3023.
This RFC established the convention of adding the name of the augmented media

type as a suffix to the name of the newly created media type using the + character
as a delimiter (+xml in this case). Over time, this convention has become a de-facto
standard for media types in general [FKH13].
As mentioned before, the Siren media type is an example of a JSON augmentation.

On the other hand, the media type HAL is based on XML:

• application/vnd.siren+json

• application/hal+xml

4.3.4. Semantic coverage
As mentioned in the beginning of this section, a media type may also allow a client to
understand parts of the semantics of a representation. For that purpose, a media type
may define application semantics, restrict their combination with protocol semantics
or limit protocol features to be used in representations. Thereby, the extent to which
each is the case depends on the definition of the individual media type.

Collection+JSON

In order to demonstrate these possibilities, figure 4.8 displays a representation based
on the media type Collection+JSON [Amu11] which is somewhat equivalent to the
combination of the Siren representation shown in figures 4.1 and 4.2 as explained in
the following.
In terms of application semantics, Collection+Json defines every resource to be a

collection, that is one which “lists other resources [(its items)] by linking to them”
[RAR13]. This why the resource underlying the representation shown in figure 4.8, is
actually a collection of questionnaires instead of a single one: Representations based
on Collection+JSON cannot specify properties equivalently to, for instance, Siren.
In addition, Collection+JSON defines several operations which can be performed

upon collections and whose availability is indicated by special elements such as the
template one. Its presence indicates that a client can use the data object defined by
the template element to append a new item to the collection. This is done by send-
ing a POST request containing a representation based on said object to the collection
resources whose identifier is specified by the top-level href attribute. Furthermore,
it also allows for updating an existing item by sending a PUT request containing a
respective representation to resource identified by the href attribute of the item in
question.
Thereby, the update operation is a good example of restricted protocol features and

their combination with application semantics: Theoretically, you could also update an
item by sending a PATCH request to the collection resource. However, Collection+JSON
does not support PATCH requests in general which is why this combination is not al-
lowed.

51

4. Implementing the hypermedia strategy

1 {
2 "collection": {
3 "version" : "1.0"
4 "href": "http://example.com/questionnaires",
5
6 "items": [
7 {
8 "href": "http://example.com/questionnaires/1",
9 "data": [
10 { "name": "analysisDelay", "value": "PT5S" },
11 { "name": "identifier", "value": "SE101SS14" },
12 { "name": "title", "value": "Lecture evaluation: Software

Engineering 101 (SS14)" }
13]
14 }
15],
16 "template:" {
17 "data": [
18 { "name": "analysisDelay", "value": "" },
19 { "name": "identifier", "value": "" },
20 { "name": "title", "value": "" }
21]
22 }
23 }
24 }

Figure 4.8.: Minimal example representation of a questionnaire based on Collec-
tion+JSON

Domain specific & generic hypermedia types

Depending on their semantic coverage, hypermedia types are often classified into do-
main specific and generic ones (e.g. in [RAR13]). The advantage of this classification
is that it gives a quick impression concerning the usage characteristics of a media
type.
Hypermedia types which do not define application semantics on their own or notably

restrict features and usage of the underlying protocol are categorized as generic ones.
Respectively, formats suchHAL,HTML or Siren fall into this group. Without additional
documentation, neither human nor machine can fully understand the semantics of, for
instance, the Siren properties data elements as they are not covered by the specifica-
tion. By contrast, domain specific media types describe all semantics of said domain
as part of their definition. 1
As an example, figure 4.9 shows a representation based on a hypermedia type named

Maze+XML [Amu10]. Essentially, this media type allows to define a virtual maze con-

1Due to these definition, Collection+JSON does not qualify as a generic media type, but is definitely more
of a generic instead of a domain specific media type because it does not explain things like the actual
nature of its collections and items

52

4.3. Media types

1 <maze version="1.0">
2 <cell href="/cells/C">
3 <title>The End of the Tunnel</title>
4 <link rel="west" href="/cells/B"/>
5 <link rel="exit" href="/success.txt"/>
6 </cell>
7 </maze>

Figure 4.9.: Example of representation based on the domain-specific media type
Maze+XML (taken from [RAR13]

sisting of a network of cells [RAR13]. All cells are realized as separate resources and
connected by control elements describing cardinal directions (e.g. rel=“east”) or
special cells such as exit of the maze (rel=“exit”).
Given that all allowed elements such as maze, cell, title and link as well as the val-

ues for cardinal directions are specified by the hypermedia type, a client is able to
understand the semantics of all Maze+XML based representations. So in this case, a
client would understand that the representation describes a cell titled “The End of the
Tunnel” which has one control element describing a connection to a cell in the west
as well as another one to exit the maze.
As a result, domain specific hypermedia types have one crucial advantage with re-

gard to the semantic challenge: Due to the fact that their specification covers all se-
mantics, humans can read it to understand respective representations instead of be-
ing required to figure things out on the go. In addition, a client can be programmed
against this specification so that it can autonomously deal with respective represen-
tations. By contrast, generic hypermedia types have to somehow provide additional
documentation at runtime to fill in the blanks.
In return, one of the main problems of domain specific hypermedia types is that

they only work that way within their domain. As soon as an application context even
partially ranges outside said domain, you essentially face the same problems as when
using a generic hypermedia type which makes them more or less useless. Beyond,
domain specific hypermedia types seem to be quite rare [RAR13].

Usage and creation

So when designing an API, you should make use of existing, domain specific hyperme-
dia types whenever possible. In case no suitable one exists, [RAR13] recommends to
rather work with a generic hypermedia type and to provide the additionally required
documentation by other means. This is because creating a media type which proves
itself over time is not that simple. In addition, media types require client and server
frameworks to be effectively usable in practice (e.g. to parse, validate and convert
representations).

Different hypermedia formats suit different services. The choice depends
on a trade-off between reach and utility — between the ability to leverage
existing widely deployed software agents and the degree to which a format
matches our domain’s needs [WPR10].

53

4. Implementing the hypermedia strategy

Consequently, an API should also avoid using too many different media types though
it may be a valid option if the API provides significantly divergent content as indicated
by the top-level type of a media type. Given that textual media types such as the ones
used in this chapter were not designed to convey images, videos or the like, it would
definitely makes sense to use an additional, domain specific media type like SVG for
that purpose.

If you ever find yourself defining 5 or 10 media types for a single API, that’s
a bad sign [RAR13].

Naturally, this lead to one question: How can you close this semantic gap left by
generic media types? 2

4.4. Closing the semantic gap
As mentioned in section 3.1.2, hypermedia has a different entry-barrier level depend-
ing on either human or machine clients interacting with a server. Respectively, there
two approaches of working towards closing the semantic gap left by media types: Em-
bedded documentation and profiles.

If you’re designing an API, and you know that all the decisions about state
transitions will be made by human endusers, you don’t need a profile at
all. Websites don’t have profiles. If you know that all the decisions will be
made by automated clients, you don’t need embedded documentation at all
[RAR13].

Which approach to use thereby depends on the types of clients to be expected. Given
that resources may be accessed by human and machine clients, both approaches may
also be applied within the same representation.
Furthermore, both may fill in missing application as well as protocol semantics. Cov-

ering either would for instance be required when using a media type such as JSON
(identify controls and cover their entire protocol semantics) or HAL (cover protocol
semantics such as the HTTP method to be used).
Given that hypermedia types such as HTML or Siren are capable of dealing with the

bulk of protocol semantics within representations themselves, [RAR13] recommends
to prefer these if possible. That way, additional documentation only needs to handle
application semantics. This also guarantees that a machine client can at least operate
on behalf of a human user even if it is not capable of fully comprehending the content
being transferred or the “higher-level” interaction being carried out.

4.4.1. Embedded documentation
As mentioned before, humans are fairly good at figuring things out. This is why in
case of mostly human-driven clients, the simplest solution is to embed documentation
within the elements of a hypermedia representation.
As demonstrated in figure 4.10, HTML allows to add embedded documentation by

specifying a title or value attribute, or else as plain text within the element itself. Most
2This term has been coined by [RAR13] along “the semantic challenge”.

54

4.4. Closing the semantic gap

media types seem to follow this example and support specifying title attributes as part
of the elements they define.

1 <!-- actions -->
2 <form method="POST" action="/questionnaires/1">
3 Content: <input type="text" title="The content of the question"/>
4 <input type="submit" title="Creates and appends a question to this

questionnaire" value="Append"/>
5 </form>
6
7 <!-- links -->
8 <a rel="self" title="Links to this questionnaire" href="/questionnaires

/1">This questionnaire
9 <a rel="item" title="Links to a question belonging to this questionnaire

" href="/questions/1">Question 1

Figure 4.10.: Example of embedded, human readable application semantics in HTML
control elements

What is interesting about embedded documentation is that it often seems to be
mainly used and discussed in context of control elements while being skipped in con-
text of data elements (as simulated in figure 4.10). Presumably, this is because data
elements tend to have dedicated identifiers which are meaningful enough to human
users (one exception being the analyisDelay attribute). By contrast, control elements
may be much more complex and thus require a more detailed description.
This in turn was one of the main motivations for distinguishing data and control

elements as part of this thesis: Fundamentally, the approaches to make both element
types human or machine-readable work mostly analogous in each case. But if you
ignore data elements in context of human readable descriptions, it may misleadingly
seem that their machine-readable description is somewhat special if you have not yet
worked with similar approaches.
So for the sake of completeness figure 4.11 shows an example of data elements with

human readable documentation using the HTML title as well (in an actual representa-
tion, the control elements shown in figure 4.10 would have been included within the
top <div> tag). 3

4.4.2. Concerning machine-driven interaction
As explained in section 3.1.2, the main problem with regard to machine-driven inter-
action is the semantic challenge: Working around machines being terrible at under-
standing instructions written in natural language. Naturally this is the biggest problem
concerning REST APIs:

Why bother to design APIs that serve self-descriptive message if those mes-
sage won’t be understood by their software consumers? [RAR13]

3Section 4.4.3 will explain why the keys from figure 4.1 are realized using the class attribute.

55

4. Implementing the hypermedia strategy

1 <div class="questionnaire" title="Represents a questionnaire">
2 <div class="analysisDelay" title="Duration based on ISO8601 format.

Specifies how long a vote within this questionnaire must have been
submitted to be used for analysis purposes">

3 PT5S
4 </div>
5 <div class="identifier" title="A short, unique name">
6 SE101SS14
7 </div>
8 <div class="title" title="A short description of the subject of the

questionnaire">
9 Lecture evaluation: Software Engineering 101 (SS14)
10 </div>
11 </div>

Figure 4.11.: Example of embedded, human readable application semantics in HTML
data elements

Generally, little progress has been made in this area and the semantic challenge
will likely never be solved completely [RAR13]. Respectively, there are much less
approaches than compared to, for instance, media types.
Despite the fact that those which are available may seem to be quite divergent, they

can be broken down to the following three elements: Semantic aliases, profiles and
profiles identifiers (see figure 4.12).

Figure 4.12.: Conceptual UML class representation of semantic aliases, profile and
profile identifiers

Essentially, semantic aliases are short names which are embedded into represen-
tations. As indicated by their name, they serve as an alias for specific semantics (to
be assigned to an element) which is why they are intentionally meaningless on their
own. Instead, the semantics of one or more semantic aliases are explained in sepa-
rate documents, called profiles. Due to this separation, representations additionally
include profile identifiers to connect the included semantic aliases with a respective
definition.

56

4.4. Closing the semantic gap

The whole purpose of this structure is to allow for clients to be programmed against
the explanations contained in profiles ahead of time. This is why these explanations
can be comprised in natural language. Due to the combination of semantic aliases and
profile identifiers, clients can determine at runtime whether or not they are capable
of understanding the semantics found within a representation. Assuming that repre-
sentations provided by a server only employ semantic definitions clients have been
programmed to handle, they can interact autonomously.
Given that there are quite a few challenges with regard to this approach in practice,

the following discusses them in more detail including arising problems.

4.4.3. Semantic aliases
Equivalent to the elements a hypermedia representation, you can discern semantic
aliases into two groups: Link relation types which are found in context of control el-
ements and semantics descriptors which found in context of data elements. Though
both serve the same purpose and essentially work the same, there are a few differ-
ences.

Link relation types

As defined by RFC5988 [Not10], link relation types identify the semantics of a link.
Thereby, a Link is defined to be a typed connection between a contextual and a target
resource, and to be comprised of four parts: 4

• A context URI

• A link relation type

• A target URI

• Optional target attributes (which is why they will be ignored in the following)

With regard to the element types discussed in section 4.1, the target URI corre-
sponds to the resource identifier found within a control element. The context URI
identifies the resource of the representation within which the control element is found
(often also referred to as the link’s context). Respectively, a link relation type identi-
fies the semantics of the state transition described by the control element. As demon-
strated by various representations shown so far, media types mostly provide an at-
tribute or property named rel to specify link relation types with control elements. For
instance in case of HAL:

<link rel=“self” href=“http://example.com/questionnaires/1”/>

Furthermore, RFC5988 defines two kinds of link relation types: registered and
extensions. As the name indicates, the first kind has been registered somewhere
[RAR13], mostly the IANA registry [IAN14] from which all link relation type used so
far in this chapter have been taken. As with media types, it is advisable to make use
of such repositories whenever possible.
4RFC4287 actually states IRI instead of URI, but also says that the former will usually also be the latter.
See section 3 of the RFC for details

57

4. Implementing the hypermedia strategy

Due to their registration, these link relation types may be short strings such as item,
current or self because no naming collisions are expected. For exactly that reason, all
other link relation types - the extensions - must be named by URI which may (but does
not need to) identify a resource providing its definition (i.e. a profile).
For example, the IANA registry does not contain a link relation type equivalent to the

semantics of the append control element in figure 4.2. A HAL control element using a
accordingly defined extension link relation type could look like this:

<link rel=“http://example.com/relations/append”
href=“http://example.com/questionnaires”/>

Based on this definition, extension link relation types can serve as both seman-
tic alias and profile identifier while registered ones only qualify semantic aliases.
However, there are two more important conventions to be aware of as described by
[RAR13]:
First, the IANA link relation type registry, more precisely, the definitions to be found

there, are normally considered to be available implicitly. Consequently, registered
link relations allow for self-descriptiveness even though there are no explicit profile
identifiers for them.
Second, extension link relation types may be treated as registered ones (i.e. referred

to by a short string) within a representation if the latter contains an explicit profile
identifier. Assuming that the remainder of a representation does contain a profile
identifier, the append link could thus look like this:

<link rel=“append” href=“http://example.com/questionnaires”/>

Respectively, the extension link relation type in this case looks and works just as a
semantic alias.

Link relation types & HTML and Siren

Even though link relation types are generally supported by HTML, there is an inconve-
nient limitation: Both formats only allow for them to be used in context of navigational
control elements, that is Siren’s links object and HTML’s <a> tag. Hence, you cannot
specify link relation types with HTML forms or Siren actions.
In case of HTML, a common workaround is to use the class attribute as a substitute

(see figure 4.13). Given that Siren defines equivalently named property which seems
to be somewhat inspired by HTML, you could do the same.

1 <!-- other representation parts -->
2 <form method="POST" action="/questionnaires/1">
3 <input type="text" class="content"/>
4 <input type="submit" class="append" value="Append"/>
5 </form>

Figure 4.13.: Example of using the HTML’s class attribute to specify semantic aliases

Nevertheless, this is more of a hack: “HTML’s class attribute was designed to convey
information about visual display (via CSS), not to convey bits of application semantics”

58

4.4. Closing the semantic gap

[RAR13]. Likewise, the specification of Siren does not state that its class attribute is
supposed to be used that way.
So, if you use one of these media types and want machine-readability, you have to

work around this problem. You have to provide extra documentation which however
will be only human-readable. Probably one of the best places to do that is the specifi-
cation of a profile format which will be covered in section 4.4.5.

Semantic descriptors

In contrast to link relation types, semantic descriptors are not standardized. Just as the
concepts of application and protocol semantics, they have been suggested by [RAR13].
Consequently, there are no rules concerning registered or unregistered semantic de-
scriptors.
Furthermore, semantic descriptors are often not specified by way of a dedicate rep-

resentation attribute or property. As explained in section 4.4.1, data elements usually
feature meaningful names or identifiers. Respectively, keys of JSON based represen-
tations as well as tag names of XML based ones (see figure 4.14) often simultaneously
serve as semantic identifiers even though this rarely seems to be stated that explicitly.
Nevertheless, there are two exceptions:

1 <resource href="http://example.com/questionnaires/1">
2 <analysisDelay>PT5S</analysisDelay>
3 <identifier>SE101SS14</identifier>
4 <title>Lecture evaluation: Software Engineering 101 (SS14)</title>
5 </resource>

Figure 4.14.: Example of semantic descriptors based on HAL data elements

One the one hand, representations which already misuse the HTML class attribute
for link relation types, usually seem to do the same for semantic descriptors. This
is why in figure 4.11, the attributes names of a questionnaire were listed as class
attributes. 5
On the other hand, there is an open standard calledMicrodatawhich defines five new

properties for HTML5: itemprop, itemscope, itemtype, itemid and itemref [RAR13].
As shown in figure 4.15, itemprop can be used to specify semantic descriptors while
itemtype serves as a profile identifier (itemscope is a required flag to indicate the
presence of Microdata). While solving the problem of “misusing” the class attribute,
the standard still leaves two problems.
First, the standard is incapable of defining and specifying link relation types which

is why you would need an additional approach to deal with them. Second, it is only
applicable to HTML5 which, compared to XML or JSON based formats, is far more
rarely used for Web APIs [RAR13].
Other than their placement within the representation, semantic descriptors thus

work relatively similar to (extension) link relation types and the concept explained in
the beginning of section 4.4.2. They are short strings and require a profile identifier to
be stated within the same representation in order to machine-readably communicate
the semantics of data elements.
5Interestingly enough, Siren employs both possibilities

59

4. Implementing the hypermedia strategy

1 <div itemscope itemtype="http://example.com/descriptors/questionnaire">
2 <div itemprop="analysisDelay">PT5S</div>
3 <div itemprop="identifier">SE101SS14</div>
4 <div itemprop="title">Lecture evaluation: Software Engineering 101 (

SS14)</div>
5 </div>

Figure 4.15.: Semantic descriptors using Microdata

4.4.4. Profile Identifiers
Sections 4.4.2 and 4.4.3 mentioned several times that semantic aliases require a pro-
file identifier to be present within the same representation to effectively communicate
the semantics of an element.
Interestingly enough, many APIs actually feature profiles. The only problem is that

clients are expected to know where to find them and how to apply them ahead of time.
As explained by [RAR13], there are generally three ways to identify profiles.

Special purpose control elements
As demonstrated in figure 4.15, a standard or format may define special control ele-
ments such as the itemtype property for that purpose. In contrast to HTML5, HTML4
allows to do the same thing by specifying an attribute named profile within the <HEAD>
tag: [RAR13]

<HEAD profile=“http://example.com/profiles/questionnaire”>
...
</HEAD>

Link relation type

Alternatively, you can use the profile link relation type defined in RFC6906 [Wil13]:
Adding it to a control element indicates that the link’s context conforms to the profile
identified by the respective target URI. Using HAL, a respective element could look
like this:

<link rel="profile" href="http://example.com/profiles/questionnaire"/>

In case the employed media type does not allow to specify an according control
element, the HTTP Link header can be employed the same way:

Link: <http://example.com/profiles/questionnaire>; rel="profile"

Media type parameter

Nevertheless, both these options have one problem: They can only be used to char-
acterize what is being sent rather than what is being requested. The latter is for

60

4.4. Closing the semantic gap

instance useful if a client was to request one out of multiple representations each be-
ing described by a profile. Provided that the definition of the respective media type
explicitly allows to do so, you can use a media type parameter for both scenarios using
the HTTP Content-Type and Accept headers:

Content-Type: application/vnd.collection+json; profile="http://example.com
/profiles/question"

Accept: application/vnd.collection+json; profile="http://example.com
/profiles/questionnaire"

As of now, this is possible when using Collection+Json, JSON-LD [14], HAL or
XHTML [RAR13].

4.4.5. Profiles
Section 4.4.2 defined profiles as documents explaining the semantics of semantic
aliases. What is both advantage and disadvantage of this concept, is that its defi-
nitions are generally not much more concise than that. Aside from not conflicting
with the semantics of a media type, their only requirement is being identified by URI
[Wil13].

The concept of a profile has no strict definition on the Internet or on the web.
For the purpose of this specification, a profile can be described as additional
semantics that can be used to process a resource representation, such as
constraints, conventions, extensions, or any other aspects that do not alter
the basic media type semantics (RFC6906) [Wil13].

Despite the fact that RFC6906 does not require profiles to be realized as resources,
it is essential to make the concepts of semantic aliases, profile identifiers and profiles
work: At design time, developers need to access and learn about semantic definitions
anyway to correctly implement a respective component. At runtime, being able to
access profiles representations is further beneficial in case a client is able to deal with
previously unknown definition; Even if it just renders the definition for a human user.
In this regard, a common misused concerning API specific profiles is to use them

for code generation [RAR13]. Even though profiles may be available of design time
(in terms of the API), they should always be considered being only available at run-
time. Otherwise, you effectively implement against a static interface described by
these profiles which is equivalent to using RPC in the first place. By contrast, creating
implementation bits to deal with reusable pieces used within these profiles does not
contradict the idea. 6

Writing profiles

Given that humans program against definitions provided by profiles, the latter can be
based on natural language which seems to quite often be the case. However, working
6As mentioned before, RPC is not be deemed a better or worse interaction style. But it is important to
understand in which situation you effectively change the interaction style while trying to be REST com-
pliant

61

4. Implementing the hypermedia strategy

with, editing or reusing such profiles tends to be quite tedious. In contrast, machine-
readable profiles can easily be searched and accessed to obtain a representation as
well as reused and remixed in context of other APIs [RAR13].
Due to REST being based on exchanging representation via a uniform interface,

reuseability of semantic definitions is essential for integration. The only way to avoid
n-to-n integration scenarios in such an environment is to have a common ground con-
cerning the parts used to compose representations.
As a consequence, profiles should at least to this extend be machine-readable. The

easiest way to achieve that is to use a respective media type which, in this context,
is more often referred to as an interface description language (IDL). Beyond that,
whether to focus on machine or human readability, is a trade-off.
Naturally, working with heavily machine-driven approaches normally requires effort

by developers given that they have to deal with parsing, validation and the like. In
return, a respective format may however allow for autonomous adaption of implemen-
tations in the event of some changes, or even for handling entirely new profiles.
On the other hand, formats relying heavily on machine-readability run the risk of

quickly becoming “too complicated for most developers to even consider using” (RDF
Schema in this case) [RAR13]. As exemplary explained by [RAR13], the goal of RDF-
Schema and OWL (Web Ontology Language) is to create profiles using a rather limited
set of core definitions and rules based on which new definition can be derived. The
result are predominantly machine-readable descriptions which may conceptually be
constructed like this:

Date of birth: The date of the event in which a person change state
from nonexistence to existence.

Following the idea that, for most applications, it is easier for client developers to
just write some code based on a human readable description [RAR13], many other
IDLs such XMDP [GMP15], Swagger [Wor14] or ALPS [ARF14] focus much more on
the human-readable side of things with varying extend of machine-readability.
The down-side of these approaches is that according implementations will break

upon most changes because there is no way to anticipate or to adapt to them. If you
were to define a title as a string consistent of 50 characters and later change it to
20, old implementations have a high chance of failing to work. Given the popularity
of Swagger, most developers however seem to prefer these approaches to the heavily
machine-driven ones.

ALPS

As an example, figure 4.16 shows an according profile using the media type ALPS
(application/alps+xml) [ARF14]. Essentially, this format uses <descriptor> tags
to define human readable semantics (<doc>...</doc>) for a specific semantic alias
(id=“analysisDelay”). It thereby expects the description to be informative enough
for a developer to figure out how to implement it.
In addition, ALPS allows for specifying a type attribute to characterize data

(type=“semantic”) and control elements based on their state transition type
(type=“unsafe”). So in contrast to theMicrodata standard, ALPSmay also define link
relation types.

62

4.4. Closing the semantic gap

1 <alps version="1.0">
2 <doc format="text">A exemplary questionnaire profile</doc>
3
4 <-- base elements -->
5 <descriptor id="analysisDelay" type="semantic">
6 <doc>Duration based on ISO8601 format (...) </doc>
7 </descriptor>
8 <descriptor id="identifier" type="semantic">
9 <doc>A short, unique name</doc>
10 </descriptor>
11 <descriptor id="title" type="semantic">
12 <doc>A short description of the subject of the questionnaire</doc>
13 </descriptor>
14
15 <-- state transitions -->
16 <descriptor id="append" type="unsafe">
17 <doc>Creates a new question and appends it to this questionnaire</

doc>
18 </descriptor>
19
20 <!-- container -->
21 <descriptor id="questionnaire" type="semantic">
22 <doc>A questionnaire featuring a set of questions</doc>
23 <descriptor href="#analysisDelay"/>
24 <descriptor href="#identifier"/>
25 <descriptor href="#title"/>
26 </descriptor>
27
28 </alps>

Figure 4.16.: A machine readable profile of a questionnaire based on ALPS

Beyond that, you can hierarchically group multiple descriptors elements to provide
more expressive description of complex (data) elements. By referring to other descrip-
tors using the href attribute, the referenced definition remain independent, may be
contained in a separate profile and reuse by others.

4.4.6. Reusing machine-readable descriptions
At this point, you might argue that a profile format like ALPS does not satisfyingly
address the semantic gap - in other words, is not sufficiently powerful - given that it
lacks too many details as the following examples:

• Is an identifier a number or string? (types)

• Is a questionnaire required to have an identifier or could it have none or multiple?
(multiplicities)

63

4. Implementing the hypermedia strategy

• Does a client need authentication to append a question to a questionnaire? (au-
thentication)

This is because ALPS has been specifically created to solve a problem which almost
all other available IDLs have [RAR13]: Due to the fact that they allow for describ-
ing these and other details, definitions created by these formats rarely end up being
reusable. In other words, they can only describe “a single instance of a single server
for a single service” [Amu13].
Apart from an exceeding level of detail, this might also be due to the following rea-

sons:

• Dependency on a specific protocol

• Dependency on a specific media type

• Specification of actual URLs

• Fixed workflow or representation structure

As demonstrated in figure 4.16, ALPS solves these problems by omitting all respec-
tive details. While this makes its definitions well reusable, it introduces another prob-
lem: Clients now lack essential, semantic details concerning the API.
Consequently, the approach discussed so far is only capable of working towards

either self-descriptiveness or reuse by sacrificing the respective other. Given that you
actually need both to make the efforts towards machine readability worthwhile, this
is a problem.

Specification lock-in

Figure 4.17.: Reuse scenarios concerning profiles definitions

Beyond that, there is another issue with regard to reusing profiles in general. Ig-
noring the limits of client adaption for a moment, a profile can be changed by a server
as needed provided that it is exclusively used by said server. But in case a profile
(document) is shared between multiple or extended by other servers (see figure 4.17),
updates must be coordinated.

64

4.4. Closing the semantic gap

Otherwise, the server changing the profile would break the remaining ones given
that these would still provide the same, “old” content while including the updated,
now incompatible profile or an inconsistent extension.
Consequently, you would need to change all servers at the same time. Though, in

large distributed systems such as the Web or enterprise application landscapes, you
usually do not have the authority or budget to do so. Effectively, you thus loose ex-
tensibility due to what you could call a specification lock-in: Once published, profiles
being reused cannot be changed. 7

The other objection to the concept of a uniform interface is that it merely
shifts all coupling issues and other problems to the data exchanged between
client and server [Vin08].

Both these problems are addressed in the next chapter.

7The effect is actually quite similar to problems discussed in context of API minimalism

65

5. Towards a Data-Driven Enterprise
Resource Architecture

To address the identified problems concerning expressiveness, reuse and extensibility
of profile definitions, this chapter first introduces a domain ontology which represents
an approach of combining human and machine-readable documentation for that pur-
pose. Subsequently, it discusses an implementation of said domain ontology based
on three formats. Last, the chapter reflects employing this approach in an enterprise
application environment based on its potential influence on respective architectures.

5.1. A new domain ontology
From a conceptual perspective, the profile based approach concerning machine-
readability can be partitioned into three domains: A protocol domain dealing with the
protocols and their features (e.g. HTTP vs COAP), a format domain whose subject are
the various media types available for a particular protocol, and a semantic domain
which comprises approaches of how to close the semantic gap left by media types.
With regard to this classification, the problems discussed at the end of chapter 4

mostly occur within the semantics domain. As shown in figure 5.1, the domain ontology
presented in the following addresses these problems by splitting said domain into two
replacements: A problem and a solution domain. 1

Goals

First and foremost, the ontology model aims to resolve the profile related conflicts
between expressiveness, reuse and extensibility discussed in the end of the last chap-
ter. For that purpose, it is to exploit the benefits of both machine and human-readable
definitions without overburdening developers with complexity.

One line of great documentation in the right place can save hours and hours
[Lac13].

Second, it aims provide multiple views on descriptive efforts in context of REST
based on its domains. This in turn is to help avoid misunderstandings when talking
about the different aspects of realizing machine-readable representations which hap-
pened frequently during the preparation of this thesis.

Overview

If a client is to request a representation from a server, it uses an instance of the proto-
col domain, that is a protocol, by which request and said representation are carried.
1The term “problem domain” is inspired by the ALPS documentation [ARF14]

67

5. Towards a Data-Driven Enterprise Resource Architecture

Figure 5.1.: Domain Ontology for Connected REST APIs

In order to process the received representation, a client has to understand its media
type which corresponds to an instance of the format domain. As explained in the last
chapter, elements of a hypermedia representation can generally convey protocol as
well as application semantics. This is why the format domain conceptually refers to
both, the protocol and solution domain.
Provided that the representation contains semantics not covered by the media type,

the client can use included profile identifiers which refer to solution domain profiles
explaining these semantics. To allow for machine-readability, these profiles are based
on, or in other words represented by, a predominantly machine-readable format.
However, solution domain profiles do not define all semantics in place. Instead

they reference and refine reusable definitions captured as problem domain profiles
which, by contrast to the solution domain, are represented by a predominantly human-
readable format.

Impact on development

From the perspective of a server, the problem domain “just” provides reusable spec-
ifications being used to build fully fledged (solution domain) profiles which are sent

68

5.1. A new domain ontology

along with representation. Due to the abstraction characteristic of resources, the im-
plementation of the server is not necessarily affected. Likely, only the design approach
is affected by the two semantic abstraction levels. By contrast, things on the client side
would be more evolutionary.
Due to initially limited framework support, a client would probably be programmed

to expect specific, fully detailed solution domain profiles. Over time and with increas-
ing framework support, client implementations should be able to determine, handle
and adapt to more and more details defined as part of solution domain profiles at
runtime.
Ultimately, it should ideally be possible to implement a client based solely on profile

domain definitions the implementer expects the client to be dealing with.
The more clients can handle as solution domain refinements, the higher the reuse

potential of problem domain definitions without facing the problem of limited expres-
siveness or extensibility.

5.1.1. Problem Domain
As just explained, the problem domain is about defining semantics in a fundamental
way allowing for their reuse and refinement as needed per application context. For
that to work, its definitions must be independent of a particular format or protocol. To
facilitate their reuse, they should ideally be collected in widely accessible repositories
or registries.
Based on definitions of the problem domain, developers should understand the con-

text they are dealing with. That is, which concepts, terms or relationships to expect
without knowing all the specific details of an actual implementation. Respectively,
definitions of the problem domain should answer questions such as:

• What is a title?

• Which other elements can be reasonably expected in its context?

• What is the general meaning of terms such as append or publish?

If one is familiar with definitions of the IANA link relation registry, one may notice
that many of its definitions suit the problem domain. However, the goal of the problem
domain is to provide definition of a comparable abstraction level for both types of
semantic aliases, not only link relation types.

Formats

As stated in the last chapter, people generally seem to prefer human-readable for-
mats for defining profiles. With regard to the example of deriving a birth date from
basic concepts, you can further argue that a great deal of the complexity of machine-
readable profiles stems from establishing rather basic definitions. Also considering
the responsibilities of problem and solution, it thus makes sense to employ a predom-
inantly human-readable format for representing definitions of the problem domain.
Nevertheless, a respective format must also be machine-readable to some extend to

allow for definitions to be reused and extended within the solution domain.

69

5. Towards a Data-Driven Enterprise Resource Architecture

Abstraction level

In general, one of the main challenges with regard to the problem domain is finding
a generally suitable abstraction level as guidance for its definitions. Given the funda-
mental difference between data and control elements it makes sense to keep up this
distinction. To some extend, the solution domain can also help in this regard: Every
detail being easily expressible in a machine readable way should likely be excluded
from the problem domain.

1 <!-- before -->
2 <descriptor id="title" type="semantic">
3 <doc>A short, description of the subject of the questionnaire</doc>
4 </descriptor>
5 <descriptor id="append" type="unsafe">
6 <doc>Creates a new question and appends it to this questionnaire</doc>
7 </descriptor>
8
9 <!-- after -->
10 <descriptor id="title" type="semantic">
11 <doc>A short, description of the element’s context</doc>
12 </descriptor>
13 <descriptor id="append" type="unsafe">
14 <doc>Creates a new resource and appends it to the link’s context</doc>
15 </descriptor>

Figure 5.2.: Abstracting definitions to the level the problem domain

Based on this principle, you can reduce a control element to the semantics of its
state transition. Everything else, transition input and output, authentication or autho-
rization restrictions can be added within the solution domain. As a consequence, the
semantics of a (former) link relation type describing append-question action discussed
in the last chapter, would be reduced to a generic append not specifying what is be-
ing appended. With regard to data elements, you can strip all information outside its
very nature such as types, constraints as well as structural aspects like multiplicities
or affiliation to bigger context. The difference of respective definitions is exemplary
shown in figure 5.2.
Thereby, standards such ISO8601 used for the analyisDelay attribute can be a con-

troversial subject. The problem is that they often come with a dedicated syntax which
is one of the things you would generally not want to specify within the problem do-
main. Given that they also frequently come with several syntax variants of which only
one is effectively used, you could however argue that it is enough of an abstraction.
Altogether, this is one of the aspects that go beyond the scope of this thesis given that
they have to be evaluated over time.

Basic elements

Respectively, the main focus of the problem domain are general, stable and atomic
definitions of semantics for semantic descriptors and link relation types. Inspired by

70

5.1. A new domain ontology

ALPS and to avoid using the term “profile” in two contexts, I will refer to single (defi-
nition) element of the problem domain as a descriptor. 2
Thereby, “stable” means that the definitions of descriptors should ideally never

change. Given that these are intended to be reused and refined in many APIs, there is
a high chance of breaking dependent definitions - especially in consequence of using
a primarily human-readable format. Though flooding the problem domain with similar
definitions generally contradicts the objectives of the problem domain, it may be a
better idea to create a new descriptor in such a case.
In addition, the “term” atomic is to emphasize that it not should be possible to parti-

tion its definitions into multiple, independently sound ones. This is to improve reuse-
ability and to reduce disruption due to changes which is best explained based on the
example.
The IANA registry [IAN14] contains a link relation type named editwhich essentially

composes the behavior of read, replace and delete. The problem of such a definition
is that you can expect its components to be employed independently which makes the
composite definitions redundant (as explained in section 4.4.3, a control element can
feature multiple link relation types).

1 <!-- before -->
2 <link rel="edit" href="http://example.com/questionnaires/1"/>
3
4 <!-- after -->
5 <link rel="http://example.com/relations/read" href="http://example.com/

questionnaires/1">
6 <link rel="http://example.com/relations/replace" href="http://example.

com/questionnaires/1">
7 <link rel="http://example.com/relations/delete" href="http://example.com

/questionnaires/1">

Figure 5.3.: Splitting non-atomic definition in the problem domain

Furthermore, changing any part of the definition will likely affect all clients using
the link relation type. As shown in figure 5.3, this effect can be diminished by rather
using respective, atomic link relation types each combined with a control element.
That way, only clients using the respectively changed atomic definition are affected. 3

Conflicting descriptors

Due to the fact that the problem domain is heavily driven by human-readable docu-
mentation, the expressiveness of descriptors always depends on the decisions of their
author. Just as the problem of updating existing definitions, it requires the problem
to support multiple, conflicting yet distinguishable definitions of the same semantic
alias.

But, like the Web, we would have to accept some things [...]: That we would
never be able to get everybody to agree on everything. That we would never

2Furthermore, ALPS will be used as problem domain format later in this chapter
3For the most part, you would skip defining these link relation types explicitly as their semantics are well
covered by for instance HTTP.

71

5. Towards a Data-Driven Enterprise Resource Architecture

be able to guarantee that any two sets of knowledge mixed together on the
web would be guaranteed to be consistent [Jim].

As explained in the last chapter, this can easily be solved by the combination of
semantic alias and profile identifier. Nevertheless, it is important to understand that
the general problem of conflicting definitions potentially undermines the objectives of
the problem domain: You cannot reap the benefits of partitioning the semantic domain
if authors cannot agree on any common basis.
Having said that, you can also consider this problem to be an advantage. This is be-

cause it allows you to incrementally converge on a suitable solution or to intentionally
keep things separated in case the unified, big bang solution does not yield effective
benefits.

Composite descriptors

Motivated by the definition of a questionnaire using ALPS in figure 4.16 (see figure 5.4
for the according excerpt), the problem domain also has to allow for defining composite
descriptors: Descriptors which are characterized by their component descriptors but
also feature semantics on their own which is why they cannot be partitioned losslessly.

1 <!-- container -->
2 <descriptor id="questionnaire" type="semantic">
3 <doc>A questionnaire featuring a set of questions</doc>
4 <descriptor href="#analysisDelay"/>
5 <descriptor href="#identifier"/>
6 <descriptor href="#title"/>
7 </descriptor>

Figure 5.4.: Excerpt of figure 4.16 showing the definition of the composite descriptor
based on ALPS

In this specific example, the composite descriptor does not contain a component one
describing link relation types. Furthermore, none of its component descriptors is in
turn a composite one. That is, the top level composite descriptor has a recursive depth
of one.
Generally, it is left to an author to decide the recursive depth as well as whether or

not a component descriptor of any type is relevant enough to be included. Given that
these structures eventually serve as blueprints for representation, designing overly
nested descriptors however often implies designing embedded resources which should
be avoided if possible. Likewise, including a component descriptor representing a link
relation type should rather rarely be the case because their definition within the prob-
lem domain is fairly generic. Including a descriptor such as the previously explained
append would not convey much information because it does not state what could be
appended (a question or category or tag or ...).
Beyond that, the presence or absence of a component descriptor within a composite

one must not indicate its assured presence or absence in a refining (solution domain)
profile. Rather, the presence of a component descriptor within a composite one indi-
cates a reasonable probability of its presence in a refining (solution domain) profile.

72

5.1. A new domain ontology

In this regard, the questionnaire descriptor shown in figure 5.4 is a good example.
While the identifier and title descriptors are probably found in most implementations,
the analysisDelay descriptor is definitely an exception which is why it should not
appear in a problem domain definition.
The rationale of this approach is to reduce the general problem of conflicting def-

initions while, at the same time giving developers a better idea of what to expect in
context of a specific composite descriptor. That way, client implementations may have
a higher chance of being able to deal with variants or changes of (solution domain)
profiles that are based on the same composite descriptor. Admittedly, this approach is
the less exploitable the more these refinements generally deviate from the structure
indicated by the composite descriptor.
Overly extensive definitions (component-wise) cause huge and mostly redundant ef-

forts for implementing clients when being used for rather simple APIs. Imagine a
questionnaire abstraction having 50 or more component descriptors with less than 10
being relevant to the respective implementation.
Keeping definition of composite descriptors too limited on the other hand defeats

their purpose because clients are “regularly” confronted with unexpected component
descriptors. Overall, finding a suitable and effective composite descriptor definition
hence will likely take time and practice.

5.1.2. Solution Domain
While the problem domain is about defining rather abstract, fundamental and reusable
semantics by way of descriptors, the solution domain aims to refine these definitions
by supplementing all those details the problem domain left out on purpose. Examples
of such details are:

• Multiplicities of data and link items

• Allowed values of a data item

• Parts of a representation that can be modified by a client (mutability)

• Relations to other resources

• Capabilities required to trigger a state transition

• Representations sent and received as part of a state transition

Semantic-wise, a (solution domain) profile thus should provide an exact blueprint of
a representation in terms of data and control elements. However, and in accordance
with the problem domain, the definition of such a profile should as well be independent
of a particular format or protocol.

Formats

Given that the problem domain heavily relies on human-readable descriptions to define
semantics, its complexity is rather “unbound”: Implementing descriptors becomes as
difficult and extensive as definitions that humans can come up with.
As a result, the most important property and objective of the solution domain is

constant complexity. This is achieved by referencing definitions of the problem domain

73

5. Towards a Data-Driven Enterprise Resource Architecture

and by using a static set of properties, values and rules; That is, machine-readable
formats.
On the one hand, this makes it easier for humans to understand corresponding def-

initions because they can rely on a repeating pattern. In addition, there is no need to
bother with entire problem domain definitions on every occasion as you can ensure (by
reference) that everybody refers to the same descriptor. On the other hand, this ap-
proach is simply required to enable machines to auto-process and adapt to changes of
solution domain definitions assuming that they have been taught the involved problem
domain definitions.
Both would not work in case you allow for defining arbitrary semantics within the

solution domain. In addition, it would open up the possibility of essential definitions
leaking from the problem domain. As a consequence, you could certainly challenge
the separation of problem and solution domain in the first place and expect seemingly
unending discussions regarding which bits of semantics should be defined in which
domain.

Elements

Despite the fact that some IDLs such as Swagger allow to describe multiple resources
up to an entire API within one document, a (solution domain) profile should only cover
the semantics of a single representation. Apart from reduced complexity, there are
three more reasons for that:

Don’t keep all the hypermedia in one place [RAR13].

First, it tempts server developers to generate the description document based on
their implementation as well as client developers to generate code on what they as-
sume to be a stable document [RAR13]. Especially the latter contradicts the idea of
the solution domain because the generated code will most likely break upon changes
instead of adapting as intended.
Second, it often diminishes human readability by bothering the reader with situa-

tionally irrelevant information. Depending on the technical support for viewing and
navigating the respective document, developers would always be required to skim
through other definitions in search of a specific one.
Third, every change needlessly affects the entire API description which worsens both

previously described issues. By partitioning the descriptions, you ideally only need to
review and adapt the code concerning the changed part (in case autonomous adaption
failed).

Figure 5.5.: Structure and relationships between descriptors, profiles, representation
and resources based on UML class diagram

Just like the problem domain, the solution domain hence should feature a modular
structure consisting of profiles each describing a single representation. The resulting

74

5.1. A new domain ontology

model is displayed in figure 5.5. 4

Conceptual mechanisms

From a conceptual perspective, the solution domain mainly employs two mechanisms:
Selection and extension.
The idea of selection is to derive a profile from suitable (composite) descriptors

by explicitly stating which ones are to be found in the resulting profile. As a benefit,
this also enables the problem domain to incorporate backward-compatible changes
without running the risk of unintentionally leaking them into solution domain profiles.
Given that profiles are likely often based on a single, primary composite descriptor,

the selection mechanism further allows to employ said descriptor as a type classifier
for the resulting profile (and thus representation).
In contrast to selection, the extensionmechanism is to extend descriptor definitions

by adding others. Based on the rationale of composite descriptors, the analysisDelay
descriptor would be an example of such a case.

Scope & reuse

Even though the solution domain is about adding details, it must not contain imple-
mentation related ones. This includes aspects like URL or data values as well as secu-
rity details like the employed authentication protocol or the meaning of authorization
terms (i.e. roles, permissions and the like).
Initially, this is required for allowing to independently choose media type and proto-

col as needed. Beyond that, keeping implementation details out of profiles facilitates
their reuse not only for identical instances of the same profile in different locations
(replication) but also when moving profiles between locations [MSW09]. In the long
run, it might even allow to use profiles to simulate and assert an API similar to how
mocks are used for graphical user interfaces (GUIs).
Furthermore, considering that especially enterprise application APIs often feature

many resources of the same kind (e.g. questionnaires, questions, answers, ...), there
is also an efficiency-related motivation for reusing profiles. Nonetheless, they must
not be reused by reference.
This is because profiles, in contrast to descriptors, do not avoid the specification

lock-in problem. While descriptors are required to change as rarely as possible - ideally
never - profiles are virtually expected to do so over time.
Consequently, profiles must only be reused by copy (see figure 5.6). If a server is to

reuse an existing profile, it must stay independent; For instance by way of a separate
resource providing a copy of the respective document. The only exception is when
being able to guarantee that all involved resources are (required) to change at the
same time: For instance due to shared implementation or in replication scenarios. 5
Overall and in contrast to descriptors, profiles hence should be located nearby the
representations referring to them.

4Up to this point I most used the term (solution domain) profile to emphasize the intended type of profile.
For the remainder of this thesis, term profile will always refer to the solution domain.

5This is why figure 5.5 shows a one-to-one relationship between profiles and representation

75

5. Towards a Data-Driven Enterprise Resource Architecture

Figure 5.6.: Reuse by references vs. reuse by copy vs. replication

5.1.3. Format & protocol domain
Given that the domain ontology makes extensive use of profiles, a chosen media type
should definitely have some type of support for connecting its representation elements
to the semantic definitions found within a linked profile. In fact, the format specified
for the solution domain in section 5.2.2 will even require a respective media type pa-
rameter to exploit all its features. Due to the extensive coverage of media types in
section 4.3, there is not much more to add at this point except for the interaction
between format and protocol domains.

Figure 5.7.: Earlier draft of the domain ontology including the mapping domain

Section 3.1.3 stated that a REST API should not be dependent on a single proto-
col; Yet, most media types are. In view of media types requiring frameworks to be
effectively used as well as other reasons such as supported features, resolving this de-
pendency by switching media types as required per protocol may often not be feasible.
In consequence of this issue, earlier drafts of the domain ontology contained a ad-

ditional mapping domain between format and protocol domain (see figure 5.7). Its
function was to provide a uniform interface as well as mapping between media types
and protocols.
However, the meaningfulness of such an approach mainly depends on the meaning-

fulness of using or switching between multiple protocols for the same API. Given that
this question goes beyond the scope of this thesis, the mapping domain was removed
from the final version of the domain ontology.

76

5.2. Implementing the domain ontology

5.2. Implementing the domain ontology
Now that the domain ontology has been covered in terms of goals, structure and con-
cepts, this section presents a respective implementation. While the problem domain
is realized by using ALPS, the following introduces a new format for each the solution
and the format domain along with a motivation for their creation.

5.2.1. Problem Domain
Given that section 4.4.5 already discussed the central aspects of the format, this sec-
tion mainly focuses on its usage according to the objectives of the problem domain.
The main reason for using ALPS is that its motivation and goals are actually quite

similar to the ones of the problem domain: Providing the means to create a reusable
vocabulary and transition set for a common domain [ARF14]. In fact, the format was
one of the main inspirations for formalizing the problem domain and creating the do-
main ontology.
Nevertheless, the two approaches differ in terms of intended usage. While the ALPS

specification envisages its definitions to be directly applied to representation, the ap-
proach presented in this chapter employs it for profile definitions. As demonstrated
by the examples in section 5.1.1, ALPS can nonetheless be employed according to the
objectives of the problem domain provided that authors keep definitions compliant to
the discussed abstraction level.
Apart from human-readable definitions themselves, there are two more things found

within the ALPS specification which should be avoided for that purpose.

1 <descriptor id="questionnaire" type="semantic">
2 <doc>A questionnaire featuring a set of questions</doc>
3
4 <descriptor id="identifier" type="semantic">
5 <doc>A short, unique name</doc>
6 </descriptor>
7
8 <descriptor id="title" type="semantic">
9 <doc>A short description of the element’s context</doc>
10 </descriptor>
11 </descriptor>

Figure 5.8.: Nested descriptor definitions in ALPS

First, ALPS generally allows for nested definitions of descriptors to indicate that
these should only appear within its composite descriptor [ARF14]. As demonstrated in
figure 5.8, you could define the identifier and title descriptors within the questionnaire
descriptor itself.
Given that the problem domain heavily emphasizes reuse of definitions, such com-

ponent descriptors should instead be included by reference using the href attribute
as for instance shown in figure 5.4.
Second, ALPS allows descriptors representing a link relation type to specify a rt at-

tribute indicating the resource type returned when executing the transition. As shown

77

5. Towards a Data-Driven Enterprise Resource Architecture

1 <descriptor id="item" type="safe" rt="question">
2 <doc>Links to a question</doc>
3 </descriptor>

Figure 5.9.: Descriptor specifying a return type in ALPS

in figure 5.9, you could for instance define a specialized item link relation type sug-
gesting that it refers to a question.
Considering that its value is defined to be an opaque string [ARF14], its specifica-

tion would not only contradict the abstraction level of the problem domain. It would
also conflict with the objective of the solution domain to provide this information in a
machine-readable, that is non-opaque, way.

5.2.2. Solution domain
By contrast to the problem domain, the implementation of the solution domain fea-
tures a specifically created format. This is simply because, due to the novelty of this
approach, no sufficient format exists.
In reference to the title of this chapter as well as the solution domain, the respective

media type is named era-sd. Given that YML allows for the most concise syntax and
can be converted to XML and JSON, the following examples are based on said format.

Overview

As shown in figure 5.10, the era-sd profile model is build on the hypermedia represen-
tation model build in the last chapter as well as the idea of refining problem domain
definitions: 6
Essentially, each profile comprises a sequence of data and control elements each

being based on a dedicated descriptor. In addition, it references another descriptor
as the primary, composite one by way of the descriptor child node within the profile
node.
Beyond that, the era-sd format features three distinct design decisions which will be

covered in the following.

Opaque security handling

First, the era-sd format almost only employs opaque strings for the indicating security
related details. This is to allow for their specification without requiring the inclusion
of implementation details such as definitions of capabilities or a chosen authentication
protocol.
As demonstrated by the append control element in figure 5.10, the format allows to

specify an authentication keyword by way of addTypes node. This indicates that some
form of authentication is required to execute the transition of the respective control
element.
6The full format specification can be found in appendex A.

78

5.2. Implementing the domain ontology

1 curies:
2 - { name: descriptors , href: http: / / example .com/ descriptors / }
3 - { name: iana , href: http: / / alps . io / iana / relations .xml# }
4 - { name: profiles , href: http: / / example .com/ profiles / }
5 profile:
6 id: profi les:questionnaire
7 descriptor: descriptors:questionnaire
8 variant: detailed
9 data:
10 −
11 name: analysisDelay
12 syntax: string (16)
13 descriptor: descriptors:analysisDelay
14 −
15 name: identi f ier
16 syntax: string (8)
17 descriptor: / identi f ier
18 −
19 name: t i t l e
20 syntax: string (50)
21 descriptor: / t i t l e
22 controls:
23 −
24 name: append
25 addTypes: authentication
26 multiplicity: 1
27 descriptor: descriptors:append
28 argProfile: / profi les / question
29 returnProfile: [profi les:question , profi les:questionLocation]
30 authorization: speaker
31 −
32 name: question
33 addTypes: transclude
34 multiplicity: "*"
35 descriptor: iana:item iana:collection
36 returnProfile: profi les:question

Figure 5.10.: era-sd profile of a questionnaire

Furthermore, capabilities required to do so are indicated as values of the autho-
rization node. Equivalent to semantic aliases, these values are meaningless on their
own. The era-sd format expects a chosen media type to provide some way for clients
to access their definitions at runtime; For instance, by means of a dedicated control
element.

79

5. Towards a Data-Driven Enterprise Resource Architecture

Embedding

Second, the format generally does not allow for embedding representations of other
resources. Instead, a profile may include transclude as a value of the addTypes node
to indicate that clients are recommended to access the identified resource(s) and to
include their representations (see the question control element in figure 5.10). 7
Thereby, the decision has two motivations: First, it avoids the caching-related prob-

lems discussed in section 3.3.3. Second, it leads to a better single responsibility in
terms of representation management. This is because it encourages resource authors
to provide specific profiles to be used for embedding instead of creating a separate
resource.
For instance, one could have created a separate resource to represent all ques-

tions belonging to a questionnaire (i.e. server side embedding), in place of instructing
clients to do so. That way, both the separately created resource as well as the question
ones would have provided (possibly different) ways to represent a question. Hence,
the according responsibility of deciding its general representation would have been
distributed over the implementations underlying the two types of resources.

Focus on success case & limitations

Third, the era-sd format solely focuses on the success case of interactions. Conse-
quently, there are no special elements or dedicated profiles to represent error mes-
sages. Rather, respective profiles should be created as needed. Furthermore, the for-
mat does not allow for specifying profiles returned in case executing a state transition
failed.
The main reason for this decision is that, for a single success case scenario, there

commonly are many more error case scenarios. Explicitly stating these within a profile
would thus drastically diminish readability. In addition, a client would ideally never
require this type of information provided that the success case scenario is sufficiently
well described.
One down side of this decision is that era-sd is incapable of describing more complex

validation scenarios. For example, there is no way to indicate that the identifier must
be set in order to be allowed to publish a questionnaire explained in section 1.1.
Though you could solve this scenario by only sending the respective control element

if the current resource state fulfills that requirement, there is no way to communicate
this context to the client. The same is true for validation scenarios in more complex
forms such as “field X must only be filled out in case box y is checked”).

5.2.3. Format domain
In order to fully exploit the possibilities provided by the era-sd format, a corresponding
representation media type requires the following features:

• A profile media type parameter

• A way to assign semantics to the opaque security related information

• Ideally, generic application semantics to avoid inconsistencies with era-sd defini-
tions

7The term transclude is inspired by the UBER format specification [Amu14].

80

5.2. Implementing the domain ontology

Thereby, the profile media type parameter is necessary given that an era-sd profile
may list multiple profiles from which a client can choose one being returned in case
of a successful state transition by way of the returnProfiles node (see for instance the
append control element shown in figure 5.10). To perform an according request using
HTTP, a client would need specify an Accept header like this:

Accept: application/vnd.era-fd+yml;profile=“http://example.com/
profiles/questionLocation”

As stated in section 4.4.4, only Collection+JSON,HAL and XHTML define this media
type paramter. Given that, the first one defines all resources to be profiles, the second
one has no protocol semantics and the third one only allows for GET and POST requests,
this section introduces a new format to fulfill the before-mentioned requirements.

1 id: http: / / example .com/ questionnaires /1
2 security: http: / / example .com/ security
3 data:
4 analysisDelay: PT5S
5 identifier: SE101SS14
6 title : Lecture evaluation: Software Engineering 101 (SS14)
7 controls:
8 append:
9 method: POST
10 href: / questionnaires /1
11 question:
12 method: GET
13 href: [/ questions /1]

Figure 5.11.: era-fd representation of a questionnaire

Format design

Figure 5.11 shows a representation of the questionnaire example based on said format.
In reference to the title of this chapter as well as the format domain, it is called era-fd.
8 Essentially, the format sticks to the structure laid out by era-sd profiles by specifying
a data and a controls node.
To handle semantics of the opaque security tokens, an era-fd representation may de-

fine a dedicated security node which is expected to link to a representation explaining
said tokens. Given that controls element may identify resources in different authenti-
cation realms, the top-level security node only provides a default value which can be
overwritten by each control element by specifying an equally named node.
In addition, all names of the data and controls node are required to match these

defined by the profile linked in the media type parameter. As a result, this parameter
is always required.

8The full format specification can be found in appendix TODO

81

5. Towards a Data-Driven Enterprise Resource Architecture

5.3. Usage in enterprise application environments
As explained in section 3.1.3, REST generally is the more suitable as an architectural
for environment the closer it resembles the Web along with its four key properties.
Consequently, the decision of whether or not to employ (an implementation) of the
domain ontology within enterprise application environments as well mostly depends
on that correlation. Thereby, a fully committed architecture could look like as shown
in figure 5.12.

Figure 5.12.: An exemplary data-driven enterprise resource architecture

The ideal solution

Instead of providing a dedicated server per application, such an data-driven enterprise
resource architecture would feature multiple servers each providing a dedicated set of
resources (e.g. security, accounting or feedback & voting). On top of that, there could
be additional servers providing cross-resource services (in turn realized resources) as
for instance a registry for indexing and searching available resources.
When developing a new application, resources and servers would be updated and

added as needed. Given that the root URL of each server would be well known within
the enterprise environment, clients could access all resource servers as needed for
the application the to be provided.
Altogether, such an architecture would allow for much more flexibility concerning

the development of resources as the overall environment changes over time. Due to
clients discovering locations and features of resource on-the-go, the latter could be
changed (to some extend) and migrated between servers as needed.

Current limits

Due to budget, effort required to establish descriptor and profile definitions and other
limitations, the advantages such an architecture can only take effect over time. Much

82

5.3. Usage in enterprise application environments

more importantly however, its power and effectiveness depends on the capabilities of
clients (as explained in section 5.1). The more these can figure out autonomously, the
more of the just-described benefits may take effect. Though for that to work, one must
be committed towards building and using hypermedia clients for that purpose.
So, if most applications are realized as rather isolated, “silo”-solutions - which would

avert most of the benefits by REST -, or if you can effectively pass on hypermedia given
that not all the architectural properties discussed in section 3.1.2 are required, such
an approach will most likely not pay off; In other words: Another architectural style
may be more beneficial. As also stated in section 3.1.2:

REST is not the one true architecture.

Intermediate solutions

Even if the fully committed approach may prove not to be feasible, there are two al-
ternated ones which may yield a better trade-off.
The first one would be to implement the domain ontology only at the server side while

hard-coding clients. That way, you would still be able to exploit the documentation-
related benefits. Given that seemingly, many so-called REST APIs are still documented
by custom made formats, the domain based approach would provide a framework for
that purpose as well as help not to forget relevant design aspects.
More importantly, it further leaves the possibility to gradually develop hypermedia

support at the client side as outlined in section 5.1 should the respective decision be
revoked at some point in time.
As a second solution, you could add an additional tier between the client and server

one. Considering that especially rich-client implementations often seem to have prob-
lems adapting to representation structures not being known before runtime, this tier
would act as a mediator between the two worlds (see figure 5.13).

Figure 5.13.: A three tier architecture featuring a mediator tier

While communicating with a server in a generic, REST based fashion, it would com-
municate with the client in a rather hard-coded, specific way while internally mapping
sent and received messages as required. Hence, this extended tier architecture would
most likely require at least as much effort as the fully committed approach. Whether
or not the former would offer more benefits than the latter however goes beyond the
scope of this thesis.

83

6. ERA-Prototype
This chapter documents some of the experience made while implementing a proof of
concept API for the example application presented in chapter 1 using the formats cov-
ered in the last chapter and Scala. Tomake thingsmore realistic concerning enterprise
application environments, the implementation was mostly based on rather traditional
technologies such as relational database instead of document-based ones.
Given that resources and representation are central aspects of REST and the domain

ontology presented in chapter 5 makes heavy use of profile, the chapter focuses on
these areas.

6.1. Resources & representations
Implementing resources with staticly typed programming languages such as Java or
Scala as well as a relational database poses a variety of challenges. Of these, the fol-
lowing covers three different problem sources: Parsing of representations, interaction
with the database and (persistent) storage of resources.

6.2. Parsing representations
First of all, servers usually receive representations containing less content than the
ones they originally sent. This is because clients are rarely allowed to modify control
elements as these are dependent on implementation details.

1 id: http: / / example .com/ questionnaires /1
2 security: http: / / example .com/ security
3 data:
4 analysisDelay: PT5S
5 identifier: SE101SS14
6 title : Lecture evaluation: Software Engineering 101 (SS14) (updated)
7 controls:

Figure 6.1.: Exemplary era-fd representation of a questionnaire which could be sent
along with a PUT request

For example, actions specified by a Siren representation only allow for sending rep-
resentations consisting of data elements as described by the fields property. By con-
trast, era-fd uses a dedicate node named mutable to indicate which elements - includ-
ing control ones - may be submitted to the server. For the purpose of demonstration,
figure 6.1 shows an era-fd representation which could be sent along with a PUT request
after having received the representation displayed in figure 5.11.

85

6. ERA-Prototype

Handling representation variants

Due to these varying representations, you normally cannot use a single class at the
server (or client) side to handle a specific resource; At least not without any extra
effort.
One option to work around this problem would be to create specific parsing routines

to include and exclude respective representation elements as needed per resource
and interaction scenario. Given that most parsing frameworks rather appear to be
intended for simpler, static scenarios, this is arguably not a preferable approach.
Alternatively, one could specify all elements not sent to the server to be optional.

Unfortunately, this option only shifts the required efforts. This is because you have
to validate each received representation after parsing to make sure it matches the
scenario. Otherwise, a client might send elements to be updated which, in the worst
case, would simply be ignored by the server despite sending a success response to
the client. Respectively, this approach would probably not only make the code more
confusing but also more error-prone.
As a result, the third option, which is to employ multiple classes to represent differ-

ent scenarios, ended up to be the preferable choice. Figure 6.2 shows the respective
framework as well as an example of representation classes implemented for that pur-
pose as part of the prototype.

Implementation

In this regard, the ControlElement trait and object were implemented to reflect the dif-
ferent types of control elements found within era-fd representations. 1 Given that the
remaining structure of era-fd representations is quite regular, it was possible to spec-
ify a single class to be used for all representation objects. To allow for incorporating
individual classes which implemented the data and controls node per resource, the
Representation class shown in figure 6.2 specifies two according type parameters. 2
Based on that, each resource could be implemented by a set of classes represent-

ing the different variants of sent and received data and controls nodes. Given that
the example application did not feature immutable data elements, a single class per
resource (type) such as Questionnaire sufficed to represent its data elements.
Thereby, requiring each of these type classes to be a case class - as indicated

by the derivation from Product - made parsing these object quite easy because every
parsing definition ended up to be a simply, one-line statement.

6.3. Database interaction
Given that hypermedia representations usually contain control elements identifying
related resources, requests reaching the database require transaction-based access to
multiple tables. For instance, assembling the representation of a questionnaire from

1Admittedly, this implementation completely relies on not using another media type or multiple security
realms due to exploiting the default values of the format

2Given that the implemented API would always use the same era-fd security link which would only be
required for sending representations, its addition was implemented as part of parsing instead of the
Representation class itself which is why it does not appear in the following code snippets.

86

6.3. Database interaction

sealed trait ControlElement

object ControlElement {
case class One(method: HttpMethod, href: Uri)
case class Many(method: HttpMethod, href: Seq[Uri]){
require(href.nonEmpty)

}
}

case class Representation[D <: Product, C <: Product](id: Uri, data:
D, controls: C)

object Questionnaire {

// data elements sent by server or client
case class Data(identifier: String, title: String, analysisDelay:

String)
// control element sent by the server
case class ServerControls(append: ControlElement.One, publish:

ControlElement.One, question: ControlElement.Many)
// control elements sent by the client
case class ClientControls()

}

Figure 6.2.: Class based implementation of representations in Scala

a respective table would further necessitate accessing a table containing question
representations to be able to correctly build up respective control elements. 3

Provided that the database also contains cache values, update operations likely re-
quire re-calculating respective values of the involved representation. In case of a ap-
pend or delete operation, it may even be necessary to do the same for other repre-
sentations. For example, appending a question to a questionnaire would probably
alter the cache values of said questionnaire given that it now features an additional
resource identifier pointing to its questions (the opposite is the case when deleting a
question). Overall, database interactions thus become much more complex compared
to approaches which treat entities stored in respective tables rather isolated.
With regard to read requests, one could have diminished the described problems by

always grouping related resources in rather artificial, intermediate collections. For
example, one could have defined resources grouping all questions of a questionnaire
having identifiers such as: /questionnaires/1/questions.
While not solving the update complexity of write-requests, such an approach would

have always required one additional, rather redundant request to actually obtain, for
instance, the questions of questionnaire which is why it is was discarded.

3Assuming that you try to stick to the relational model

87

6. ERA-Prototype

Implementation

To facilitate the previously mentioned interactions, the prototype featured a set of
factory methods. Of these, the one used for creating append methods is shown in
figure 6.3. Essentially, it performs four steps:

@throws[ResourceNotFoundException]
@throws[CacheConditionFailedException]
protected def createAppendAndRebuildCacheBy[D <: Product, C <: Product]
(
dao: BuildCacheAndInsert[D, L],
rebuildCache: Uri => ServerCache

)(
resourceId: Uri,
clientCache: ClientWriteCache,
buildResource: Long => ServerResource[D, L]

)(implicit session: Session): CachedAppendResult = {

// validate conditional request
val serverCache = findCacheBy(resourceId)
validateWriteCache(resourceId, serverCache, clientCache)
// insert (i.e. create the resource to be appended)
val cachedInsertResult = dao buildCacheAndInsertBy buildResource
// update cache values of the representation to which the created

resource is appended
val updatedCache = rebuildCache(resourceId)

CachedAppendResult(cachedInsertResult.newResourceId)
}

Figure 6.3.: Factory for creating resource specific append methods

First, it validates the cache values provided along with the conditional append re-
quest. Should these be out-of-date or the resource not be found, an according excep-
tion is thrown.
Second, it uses a provided data access object (dao) as well as a buildResource

method to create and insert the resource to be appended. For example, an append
request executed by a questionnaire data access object would accordingly employ a
question data access object to properly insert the question to be appended.
In this regard, the buildResource method was necessary given that the database

generated numeric ids for new resources. Consequently, the information provided by
the client was insufficient to be passed as a representation object as defined in figure
6.2.
Third, the method uses the provided rebuildCache method to update the cache val-

ues of the resource representation to which the newly created resource is to be ap-
pended.
Last, it returns the resource identifier of the created resource so that it can be sent

back to the client; For instance using the HTTP Location header.

88

6.4. Persisting representations

6.4. Persisting representations
With the just covered, increased complexity concerning database access in mind, the
question of how to persist resource representations becomes rather interesting. Given
that the classes used to specify representations sent to and received from clients con-
tains things one “traditionally” would not store in the database, there are two options.
The first one would be to only store “raw” values, that is data element values as

well as ids used to generate resource identifiers. However, this approach would al-
ways require additional mapping efforts and potentially classes to mediate between
the resulting (conceptual) persistence and representation objects.
Given the mentioned database interaction complexity as well as due to limited time, I

decided to, instead, persist all representation values in an intact fashion (which would
be the second option). The advantage of this approach is that, except for the case of
inserting or appending resources, it makes it relatively easy to read, update and delete
representation elements as these can essentially be treated as plain-old data values.

case class Questionnaire(
// id + cache values
id: Uri, lastModified: DateTimeDuration, eTag: EntityTag,
// data values
analysisDelay: String, identifier: String, title: String,
// control values
appendMethod: HttpMethod, appendHref: Uri,
publishMethod: HttpMethod, publishHref: Uri,
questionMethod: HttpMethod

)

Figure 6.4.: Class based representation of a database table containing all values of a
questionnaire era-sd representation

By contrast, storing links of what would be an action in Siren as well as HTTP meth-
ods of all control elements per representation can definitely be considered redundant
given that their indicated behavior is usually hard-coded and thus does not change
(see figure 6.4 for a respective class based representation of such a table).
In retrospect, the first option hence would have probably lead to an overall cleaner

and clearer implementation - especially in case one would be required to support more
complex variants of control elements.

6.5. Profiles
Given that the era-fd format heavily relies on the profilemedia type parameter, a server
employing said format must extract or set these when receiving or sending representa-
tions. Probably due to the fact that only few media types make use of this feature, the
framework employed for handling HTTP requests did not provide immediate support
for extracting it.
Due to the actual code turning out not to fit on single page, the following rather

briefly discusses some of the implementation related problems.

89

6. ERA-Prototype

Specification means

As defined by RFC7231 [FNR14b], media types specified in the Accept header are first
prioritized by way of a quality parameter (e.g. q=0.7) ranging from 1 (most preferred)
to 0.001 (least preferred). This parameter can also be set to 0, to actively exclude
specific media types.
After that more specific definitions precede more generic ones as demonstrated by

this example (in descending order):

1. text/plain;format=flowed

2. text/plain

3. text/*

4. */*

As shown by this example media types furthermore can be grouped into media
ranges by top-level type (*/*) or sub-type (text/*). Respectively, one could also spec-
ify a quality value of 0 to declare an entire media range to be unacceptable.

Determining the most preferred profile

So to determine the preferred profile, you first have to check whether or not profiles
supported by the server are flagged as non-acceptable (either specifically or bymedia
range). If that is case, a server can use a respective status code to communicate the
problem to the client: 406: NotAcceptable.
Otherwise, you have to work from higher quality values to lower ones and subse-

quently from more specific to less specific choices to see if one of the choices matches
what is supported by the server. Thereby, the process can have three outcomes:
In first case, the choices of the client are, again, too narrow so that the server would

need to respond with 406: NotAcceptable.
On the other hand, they may as well be too unspecific as for instance application/*.

In such a case, a server may either choose a profile in place of the client or respond
with a 300: MultipleChoices status code explaining the remaining choices.
In the third case, the client submitted a choice specific enough to determine a most

preferred profile which is also supported by server. As a result, the server can start
processing the actual request.

90

7. Conclusion
This chapter concludes the thesis. First, it gives a brief summary of the content of the
thesis, then it discusses potential future work.

7.1. Summary

Initially, this thesis discussed three essential topics concerning enterprise applica-
tions based on REST APIs, namely enterprise applications, API design as well as the
remote procedure call interaction style. It showed that neither enterprise applica-
tions nor well designed APIs have a generally agreed definition. In addition, the thesis
made suggestions why enterprise applications often end up being based on the RPC
paradigm.
After that, it covered the conceptual side of REST starting with more general con-

cepts such as the idea of an architectural style as well as the insight that REST is not a
golden hammer. In addition, the thesis explained the core concepts of REST, its well-
known constraints and two misconceptions. During the whole respective part, various
motivations for non REST-compliant designs were identified and explained. Further-
more, the thesis argued for not using the term pragmatic REST due to its misleading
properties.
Subsequently, the thesis discussed structure and semantics of hypermedia repre-

sentations. In this regard, it also explained the central role and importance of me-
dia types. Furthermore, the respective part showed possibilities of how to work to-
wards self-descriptive representations concerning human and machine-driven clients.
Given that said part revealed several fundamental problems with concerning machine-
readable documentation (limited expressiveness, reuse or extensbility), the next one
presented domain ontology and approach to address these issues.
One of the main ideas of this approach was to combine the advantages of human

and machine-readable documentation. Based on the ontology, the respective part also
introduced a combination of one existing and to newly created formats to work to-
wards the goals of said ontology. Furthermore, it discussed the potential concerning
enterprise application architectures facilitated by employing said approach.
Last, the thesis presented some of the experiences of implementing a prototype API

using the previously introduced formats. In this regard, it focused on the implemen-
tation of resource representations and profile based interaction.

7.2. Future work

Future work is imaginable in multiple aspects as explained in the following:

91

7. Conclusion

Standards for defining problem domain descriptors

First of all, the employment of standards for defining problem domain descriptors (see
section 5.1.1) should be further evaluated. Given that standards are usually defined
including a specific syntax it would be interesting to see whether or not this circum-
stance conflicts with the objectives of problem and solution domain. As of now, it
seems that this would only be the case when having multiple, conflicting standards
concerning a single descriptor.

Mapping domain

In addition, it might be interesting to investigate whether or not there are plausible
scenarios requiring a media type to be defined independently on an underlying proto-
col. In such a case, it would be worth discussing the inclusion of the mapping domain
in the domain ontology as reflected in section 5.1.3.

Evaluation of format stack

With regard to the three formats to implement the domain ontology, further evaluation
of their employment and the approach as a whole in practice is definitely a possibility
for further work. This also applies to the intermediate solutions discussed in section
5.3.

Era-sd extensions

Last but not least, the era-sd format could be extended in various ways. In fact, its
earlier drafts contained three additional features which were removed due to lack of
clarity.
The first one was a node to indicate deprecation of a respective element and point

to a replacement within the same profile. Given that this feature somewhat promotes
changing profiles more regularly and especially staticly type clients would have prob-
lems due to the profile containing an additional element, it was removed in later drafts.
The second features was to allow profile to define generic profile type parameters

for the argProfile and returnProfile nodes similar to their purpose in programming
languages. For example:

returnProfile: profiles:result@profiles:question

That way, authors could have specified a single profiles which could have been used
in multiple scenarios being identical except for specific “profile types”.
The third features involved a specification that would have allowed clients to change

semantics of elements. For example, API administrators might be interested in being
able to change the authorization values of a state transition by sending respective
requests to the server. However, there is no way in the final draft of era-sd to specify
interactions such as this.
Due to limited time, both these last features could not be fully evaluated which is

why they were removed from the final draft. In the future these and other feature
might very well be re-added to the format.

92

A. ERA-SD
Overview
Name: era-sd
Potential media type name: application/vnd.era-sd+yml 1

Current Version: 0.9

Media type parameters

Name Description Required Template Example
version Indicates the era-sd format

version used in this docu-
ment

True String version=0.9

Remarks

• This format specification makes use of the compact URI format defined by [BM10]

• In the following a document using this format is referred to as profile

• The following employs terms node, scalar, sequence and mapping as defined by
[BEN15]

• The following makes references to Unified Modeling Language (UML)

1XML and JSON variants analogous

93

A. ERA-SD

A.1. Maximum skeleton

1 curies:
2 −
3 name:
4 href:
5 profile:
6 id:
7 descriptor:
8 variant:
9 data:
10 −
11 name:
12 syntax:
13 descriptor:
14 multiplicity:
15 mutable:
16 controls:
17 −
18 name:
19 addTypes:
20 descriptor:
21 multiplicity:
22 mutable:
23 argProfile:
24 returnProfile:
25 authorization:

Figure A.1.: Maximum skeleton of an era-sd profile showing all specification possibil-
ities

A.2. Nodes
curies

Description: A sequence of compact URI definitions available in this profile. Each
item is a mapping consisting of a name and a href node describing
prefix and reference of the respective CURIE.

Rationale: Increases readability.
Required: False
Default: -
Template: -
Example: see figure A.2

94

A.2. Nodes

1 curies:
2 −
3 name: descriptors
4 href: http: / / example .com/ descriptors /
5 −
6 name: iana
7 href: http: / / alps . io / iana / relations .xml#

Figure A.2.: Example of a curies sequence within an era-sd profile

profile

Description: Mapping containing the actual profile. May contain the following
nodes: id, semantics, variant, data, controls

Rationale: -
Required: True
Default: -
Template: -
Example: -

id

Description: URL of this profile.
Rationale: Required for unique identification and reference of profiles.
Required: True
Default: -
Template: URI or CURIE
Example: http://example.com/profiles/questionnaire,

profiles:questionnaire

95

A. ERA-SD

descriptor

Description: URL of the descriptor refined by this profile.
When appearing as a child of the profile node, it identifies the primary,
composite descriptor of this profile.
When appearing as a child of an item of the data node, it identifies a
component or extension descriptor refined by the data element as ex-
plained in section 5.1.2.
When appearing as a child of an item of the controls node, it identi-
fies ideally a single, but possibly multiple link relation type descriptor
refined by the respective control element.

Rationale: Reuse by reference of descriptor definitions
Required: True
Default: -
Template: URI, CURIE or relative URI (to identify a component descriptor)
Example: http://example.com/descriptors/questionnaire,

descriptors:questionnaire,
/analysisDelay

variant

Description: URL of a descriptor characterizing this profile in context of multiple
variants of the same resource.

Rationale: Used to help clients with selecting one of multiple profiles (e.g. preview
vs. detailed, small vs. large, mobile vs. desktop).

Required: False
Default: -
Template: URI or CURIE
Example: http://example.com/relations/preview,

relations:detailed

data

Description: A sequence of data items defined by this profile. Each item may con-
tain the following child nodes: name, syntax, descriptor, multiplicity,
mutable.

Rationale: Separated from control elements due to different child nodes and de-
fault values.

Required: True
Default: -
Template: -
Example: see figure A.3

96

A.2. Nodes

1 data:
2 −
3 name: t i t l e
4 syntax: string (50)
5 descriptor: / t i t l e
6 multiplicity: 1
7 mutable: true

Figure A.3.: Example of a data node within an era-sd profile

controls

Description: Contains the data items of this profile. Each item may contain the fol-
lowing child nodes: name, type, rel, argProfile, returnProfile, return-
Type, authorization.

Rationale: Separated from data elements due to different child nodes and default
values.

Required: True
Default: -
Template: -
Example: see figure A.4

1 controls:
2 −
3 name: append
4 addTypes: auth
5 multiplicity: 1
6 descriptor: basic:append
7 argProfile: / profi les / question
8 returnProfile: profi les:result@profiles:question
9 authorization: speaker
10 mutable: false

Figure A.4.: Example of a controls node within an era-sd profile

97

A. ERA-SD

name

Description: Identifies the parent node within a sequence of identical items such as
curies, data or controls).

Rationale: Used to refer to curies within a profile as well as to data and control
items from a representation.

Required: True
Default: -
Template: camel case string
Example: analysisDelay

syntax

Description: Defines the basic syntax of a data element value.
Rationale: Provides low level parsing information which can be processed without

understand the semantics of the data element.
Required: True
Default: -
Template: Must be on of these alternatives:

boolean true or false
number basically of double
values(<val1>, <val2>, ...) enumeration of allowed values
string(N) string of length N
regex(<pattern>) a regular expression

Example: string(10),
values(small, medium, large)

multiplicity

Description: Describes the multiplicity of a data or controls item values.
Rationale: Representations often refer to many resources providing an identical

profiles or may contain multiple data values of the same type. For in-
stance, a questionnaire may link to many questions.

Required: True
Default: 1
Template: UML multiplicity values
Example: *, +, 1, 0..1

98

A.2. Nodes

mutable
Description: Describes whether or a client is allowed to change the value of the

respective data or controls item.
Rationale: Control element values are not necessarily always immutable just as

data element values do not need to mutable.
Required: false
Default: true when appearing as a child of a data item. false when appearing

as a child of a controls item.
Template: Boolean
Example: true

addTypes

Description: Lists one more additional type characterizing the state transition de-
scribed by the controls item it appears in.

Rationale: Enriches the state transition type definition from the problem domain.
Possible future extension point.

Required: false
Default: -
Template: Scalar value or sequence of scalar values. May consist of the following

values:
authentication Triggering the state transition requires some

sort of authentication. A respective represen-
tation should provide information of how to
get it

transclude Clients are recommended to automatically
retrieve a representation using the respec-
tive control element and to include in the cur-
rent representation 2

Example: [authentication, transclude]

argProfile

Description: URL of a profile describing the representation to be sent to trigger
the respective state transition. Elements not being mutable must be
excluded.

Rationale: A more generic approach compared to providing specialized elements
such as the fields property of a Siren representation.

Required: false (some transition do not need an input representation)
Default: -
Template: URI or CURIE
Example: http://example.com/profiles/question,

profiles:question
2The term transclude was inspired by the UBER format specification [Amu14]

99

A. ERA-SD

returnProfile
Description: URL(s) of one or more profiles describing possible response represen-

tations from which the client is to choose
Rationale: A more generic approach compared to providing specialized elements

such as the fields property of a Siren representation.
Required: false (in case the respective media type does not support profiles)
Default: -
Template: Either a single scalar represented by an URI or CURIE, or a sequence

of such scalar nodes
Example: http://example.com/profiles/question,

profiles:question

authorization
Description: One or more opaque tokens representing capabilities such as roles or

permissions required to trigger the state transition described by the
controls item it appears in

Rationale: Allows for specification without being dependent on implementation
details

Required: false
Default: -
Template: Either a single scalar represented by an string token, or a sequence of

such scalar nodes
Example: author, admin

100

B. ERA-FD
Overview
Name: era-fd
Potential media type name: application/vnd.era-fd+yml 1

Current Version: 0.9

Media type parameters

Name Description Required Template Example
version Indicates the era-fd format

version used in this docu-
ment

True String version=0.9

profile References a profile de-
scribing the contents of a
request or response repre-
sentation

False 2 URI profile=“<URI>”

Remarks

• This format specification makes use of the compact URI format defined by [BM10]

• The following employs terms node, scalar, sequence and mapping as defined by
[BEN15]

B.1. Maximum skeleton

B.2. Nodes
id
Description: URL of the resource underlying this representation.
Rationale: Required due to resource identification constraint.
Required: True
Default: -
Template: URI
Example: http://example.com/questionnaires/1

1XML and JSON variants analogous
2Must not be required to allow for more general requests such as Accept: application/vnd.era-fd+yml
which a client would likely make when starting to interact with an API

101

B. ERA-FD

1 id:
2 security:
3 data:
4 <name>: <value>
5 controls:
6 <name>:
7 method:
8 href:
9 security:
10 argType:
11 returnType:

Figure B.1.: Maximum skeleton of an era-fd profile showing all specification possibili-
ties

security

Description: URL of a resource providing security information concerning the en-
tire representation or control element. The node found at the top level
serves as default value and can be overwritten by additional specifica-
tions as part of control elements.

Rationale: Assign semantics to opaque security values for instance provided by
an era-sd profile

Required: False (an API might not have any security related features)
Default: -
Template: URI
Example: http://example.com/security

data
Description: A mapping of name-value pairs. Each name-node should match the

name of data element described in a profile referenced by the profile
media type parameter. Each value node must match the semantics
identified in said profile.

Rationale: Groups all data elements.
Required: True
Default: -
Template: -
Example: see figure B.2

1 data:
2 analysisDelay: PT5S

Figure B.2.: Example of the data node of an era-fd representation

102

B.2. Nodes

controls

Description: A mapping of name-value pairs. Each name-node should match the
name of control element described in a profile referenced by the profile
media type parameter. Each value must in turn be a mapping with
may have the following child nodes: method, href, security, argType,
returnType.

Rationale: Groups all control elements
Required: True
Default: -
Template: -
Example: see figure B.3

1 controls:
2 append:
3 method: POST
4 href: / questionnaires /1
5 argType: application /vnd. era−fd+yml
6 returnType: application /vnd. era−fd+yml

Figure B.3.: Example of the data node of an era-fd representation

method

Description: Specifies the HTTP method to be used for the respective control
element.

Rationale: Specification of protocol semantics
Required: True
Default: -
Template: One of the following HTTP methods: GET, DELETE, PATCH, POST,

PUT
Example: GET

103

B. ERA-FD

href
Description: Specifies the identifier of the resource providing the state transition

described by the control element.
Rationale: Required due to resource identification constraint.
Required: True
Default: -
Template: URI,

relative URI based on the domain name of the value of the id node or
a URI template.
In the last case, values of elements specified by a profile such as era-sd
which match the variable names of the template must be inserted into
the URI instead of being send in the payload

Example: http://example.com/questionnaires/1,
/questionnaires/1,
/questionnaires/identifier

argMediaType

Description: One of more full media type names which may used to submit the
request

Rationale: Integration with other media types
Required: False
Default: If not specified, clients are expected to use application/vnd.era-

fd+yml including the respectively set profile parameter as for instance
stated by an era-sd profile

Template: Media type name definition as explained in RFC7231 [FNR14b].
Example: -

returnMediaType

Description: One of more full media type names which may are to expected and/ or
requested to be used by the server for the response message.

Rationale: Integration with other media types.
Required: False
Default: If not specified, clients can expect to receive a representation based

on application/vnd.era-fd+yml including the respectively set profile
parameter as for instance stated by an era-sd profile.

Template: Media type name definition as explained in RFC7231 [FNR14b].
Example: -

104

C. Bibliography
[14] JSON-LD. 2014.

URL: http://json-ld.org/ (visited on 09/02/2014).
[15] Printing a DOM document in Java. 2015.

URL: http://stackoverflow.com/questions/2325388/java-shortest-
way-to-pretty-print-to-stdout-a-org-w3c-dom-document (visited
on 01/14/2015).

[AK10] A. Al Kalbani and Kinh Nguyen. „Designing flexible business information
system for modern-day business requirement changes“. In: Software Tech-
nology and Engineering (ICSTE), 2010 2nd International Conference on.
Vol. 2. 2010, DOI: 10.1109/ICSTE.2010.5608774.

[Amu10] M. Amundsen. Maze+XML. 2010.
URL: http://amundsen.com/media-types/maze/ (visited on 01/07/2015).

[Amu11] M. Amundsen. Collection+JSON. 2011.
URL: http://amundsen.com/media-types/collection/format/.

[Amu13] M. Amundsen. Describing the Possible with ALPS: REST FEST. Greenville
SC USA, 2013.

[Amu14] M. Amundsen. Uniform Basis for Exchanging Representations (UBER).
2014.
URL: https : / / rawgit . com / mamund / media - types / master / uber -
hypermedia.html (visited on 12/10/2014).

[ARF14] M. Amundsen, L. Richardson, and M. Foster. Application-Level Profile Se-
mantics (ALPS): draft-amundsen-richardson-foster-alps-00. 2014.
URL: http://tools.ietf.org/html/draft- amundsen- richardson-
foster-alps-00 (visited on 12/09/2014).

[BEN15] O. Ben-Kiki, C. Evans, and I. döt Net. YAML Ain’t Markup Language
(YAMLTM) Version 1.2. 2015.
URL: http://www.yaml.org/spec/1.2/spec.html (visited on 01/13/2015).

[Ber06] T. Berners-Lee. Linked Data - Design Issues. 2006.
URL: http://www.w3.org/DesignIssues/LinkedData.html (visited on
08/07/2014).

[Blo07] Joshua Bloch.How to Design a Good API andWhy it Matters. Ed. by Google
Tech Talks. 2007.
URL: https://www.youtube.com/watch?v=heh4OeB9A- c (visited on
06/17/2014).

[BM10] M. Birbeck and S. McCarron. CURIE Syntax 1.0: A syntax for expressing
Compact URIs. 2010.
URL: http://www.w3.org/TR/curie/ (visited on 01/11/2015).

105

http://json-ld.org/
http://stackoverflow.com/questions/2325388/java-shortest-way-to-pretty-print-to-stdout-a-org-w3c-dom-document
http://stackoverflow.com/questions/2325388/java-shortest-way-to-pretty-print-to-stdout-a-org-w3c-dom-document
http://dx.doi.org/10.1109/ICSTE.2010.5608774
http://amundsen.com/media-types/maze/
http://amundsen.com/media-types/collection/format/
https://rawgit.com/mamund/media-types/master/uber-hypermedia.html
https://rawgit.com/mamund/media-types/master/uber-hypermedia.html
http://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-00
http://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-00
http://www.yaml.org/spec/1.2/spec.html
http://www.w3.org/DesignIssues/LinkedData.html
https://www.youtube.com/watch?v=heh4OeB9A-c
http://www.w3.org/TR/curie/

C. Bibliography

[CA08] Krzysztof Cwalina and Brad Abrams. Framework Design Guidelines: Con-
ventions, Idioms, and Patterns for Reusable .NET Libraries. 2nd. Addison-
Wesley Professional, 2008. ISBN: 0321545613.

[Cum02] Fred A. Cummins. Enterprise Integration: An Architecture for Enterprise
Application and Systems Integration. New York, NY, and USA: John Wiley
& Sons, Inc, 2002. ISBN: 0471400106.

[DLS10] L. Dusseault, L. Lab, and J. Snell. The Patch Method for HTTP: RFC5789.
2010.
URL: http://tools.ietf.org/html/rfc5789.

[FB96a] N. Freed andN. Borenstein.Multipurpose InternetMail Extensions (MIME)
Part One: Format of Internet Message Bodies: RFC2045. 1996.
URL: http://tools.ietf.org/html/rfc2045 (visited on 12/15/2014).

[FB96b] N. Freed andN. Borenstein.Multipurpose InternetMail Extensions (MIME)
Part Two: Media Types: RFC2046. 1996.
URL: http://tools.ietf.org/html/rfc2046 (visited on 12/11/2014).

[Fie00] Roy Thomas Fielding. „Architectural Styles and the Design of Network-
based Software Architectures“. PhD thesis. 2000.

[Fie07] Roy T. Fielding. The Rest of REST. 2007.
URL: http://roy.gbiv.com/talks/200709%5C_fielding%5C_rest.pdf
(visited on 08/06/2014).

[Fie08] Roy T. Fielding. REST APIs must be hypertext-driven. 2008.
URL: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-
hypertext-driven (visited on 09/04/2014).

[FKH13] N. Freed, J. Klensin, and T. Hansen. Media Type Specifications and Regis-
tration Procedures: RFC6838. 2013.
URL: http://tools.ietf.org/html/rfc6838 (visited on 12/11/2014).

[FNR14a] Roy T. Fielding, M. Nottingham, and J. Reschke. Hypertext Transfer Pro-
tocol (HTTP/1.1): Caching: RFC7234. 2014.
URL: https://tools.ietf.org/html/rfc7234 (visited on 11/14/2014).

[FNR14b] Roy T. Fielding, M. Nottingham, and J. Reschke. Hypertext Transfer Pro-
tocol (HTTP/1.1): Semantics and Content: RFC7231. 2014.
URL: https://tools.ietf.org/html/rfc7231 (visited on 11/26/2014).

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture. Boston,
MA, and USA: Addison-Wesley Longman Publishing Co., Inc, 2002. ISBN:
0321127420.

[FT02] Roy T. Fielding and Richard N. Taylor. „Principled Design of the Modern
Web Architecture“. In: ACM Trans. Internet Technol. 2.2 (2002), pp. 115–
150. ISSN: 1533-5399. DOI: 10.1145/514183.514185.
URL: http://doi.acm.org/10.1145/514183.514185.

[GMP15] GMPG. Xhtml Meta Data Profiles. 2015.
URL: http://gmpg.org/xmdp/ (visited on 01/14/2015).

106

http://tools.ietf.org/html/rfc5789
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2046
http://roy.gbiv.com/talks/200709%5C_fielding%5C_rest.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7231
http://dx.doi.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
http://gmpg.org/xmdp/

[Hen07] Michi Henning. „API Design Matters“. In: Queue 5.4 (2007), pp. 24–36.
ISSN: 1542-7730. DOI: 10.1145/1255421.1255422.
URL: http://doi.acm.org/10.1145/1255421.1255422.

[Hyu+09] Hyuck Han et al. „A RESTful Approach to the Management of Cloud In-
frastructure“. In: Cloud Computing, 2009. CLOUD ’09. IEEE International
Conference on. 2009, pp. 139–142. DOI: 10.1109/CLOUD.2009.68.

[IAN14] IANA. Link Relations. 2014.
URL: http://www.iana.org/assignments/link- relations/link-
relations.xhtml (visited on 09/29/2014).

[Jim] Jim Hendler. „ESWC 2011 Keynote Speech: "Why the Semantic Web will
never work"“. In:
URL: http://videolectures.net/eswc2011%5C_hendler%5C_work/
(visited on 06/17/2014).

[Kel13] Mike Kelly. HAL - Hypertext Application Language. 2013.
URL: http://stateless.co/hal%5C_specification.html (visited on
10/09/2014).

[Krc10] Helmut Krcmar. Informationsmanagement. 5th ed, completey revised and
extended. Berlin and Heidelberg: Springer-Verlag, 2010. ISBN: 978-3-642-
04285-0.

[Lac13] Kevin Lacker. How to design a great APIs. Parse Developer Days, 2013.
URL: https://www.youtube.com/watch.

[Mic14] Microsoft Developer Network. What is an Enterprise Application? Ed. by
Microsoft Developer Network. 2014.
URL: http://msdn.microsoft.com/en-us/library/aa267045(v=vs.60)
.aspx (visited on 08/21/2014).

[Mic15] Microsoft. The OSI Model’s Seven Layers Defined and Functions Ex-
plained. 2015.
URL: https://support.microsoft.com/kb/103884 (visited on 01/14/2015).

[MN90] Rolf Molich and Jakob Nielsen. „Improving a Human-computer Dialogue“.
In: Commun. ACM 33.3 (1990), pp. 338–348. ISSN: 0001-0782. DOI: 10.
1145/77481.77486.
URL: http://doi.acm.org.eaccess.ub.tum.de/10.1145/77481.77486.

[Moo10] Jon Moore. Hypermedia APIs: The Rest of REST. 2010.
URL: http://vimeo.com/20781278 (visited on 11/05/2014).

[MSW09] J. Mangler, E. Schikuta, and C. Witzany. „Quo vadis interface definition lan-
guages? Towards a interface definition language for RESTful services“. In:
Service-Oriented Computing and Applications (SOCA), 2009 IEEE Inter-
national Conference on. 2009, pp. 1–4. DOI: 10.1109/SOCA.2009.5410459.

[Not] M. Nottingham. HTTP/2.0: Challenges and Opportunities.
URL: https://www.mnot.net/talks/http2-expectations/%5C#/.

[Not10] M. Nottingham. Web Linking: RFC5988. 2010.
URL: http://tools.ietf.org/html/rfc5988 (visited on 09/29/2014).

107

http://dx.doi.org/10.1145/1255421.1255422
http://doi.acm.org/10.1145/1255421.1255422
http://dx.doi.org/10.1109/CLOUD.2009.68
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://videolectures.net/eswc2011%5C_hendler%5C_work/
http://stateless.co/hal%5C_specification.html
https://www.youtube.com/watch
http://msdn.microsoft.com/en-us/library/aa267045(v=vs.60).aspx
http://msdn.microsoft.com/en-us/library/aa267045(v=vs.60).aspx
https://support.microsoft.com/kb/103884
http://dx.doi.org/10.1145/77481.77486
http://dx.doi.org/10.1145/77481.77486
http://doi.acm.org.eaccess.ub.tum.de/10.1145/77481.77486
http://vimeo.com/20781278
http://dx.doi.org/10.1109/SOCA.2009.5410459
https://www.mnot.net/talks/http2-expectations/%5C#/
http://tools.ietf.org/html/rfc5988

C. Bibliography

[Not13] M. Nottingham. Caching Tutorial for Web Authors and Webmasters. 2013.
URL: https://www.mnot.net/cache%5C_docs (visited on 12/15/2014).

[NS05] M. Nottingham and R. Sayre. The ATOM Syndication Format. 2005.
URL: https://tools.ietf.org/html/rfc4287 (visited on 01/14/2015).

[Ora12] Oracle. Overview of Enterprise Applications: JEE6 Documentation. Ed. by
Oracle. 2012.
URL: http://docs.oracle.com/javaee/6/firstcup/doc/gcrky.html
(visited on 08/21/2014).

[Ora14] Oracle. An Overview of RMI Applications. 2014.
URL: http://docs.oracle.com/javase/tutorial/rmi/overview.html
(visited on 09/05/2014).

[Pos94] J. Postel. Media Type Registration Procedure: RFC1590. 1994.
URL: http://tools.ietf.org/html/rfc1590 (visited on 12/15/2014).

[RAR13] L. Richardson, M. Amundsen, and S. Ruby. Restful Web Apis. Oreilly &
Associates Incorporated, 2013. ISBN: 9781449358068.

[RSK12] Dominik Renzel, Patrick Schlebusch, and Ralf Klamma. „Today’s Top
"RESTful" Services and Why They Are Not Restful“. In: Proceedings of
the 13th International Conference on Web Information Systems Engineer-
ing. WISE’12. Berlin and Heidelberg: Springer-Verlag, 2012, pp. 354–367.
ISBN: 978-3-642-35062-7. DOI: 10.1007/978-3-642-35063-4_26.
URL: http://dx.doi.org/10.1007/978-3-642-35063-4%5C_26.

[SHB14] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Pro-
tocol (CoAP): RFC 7252. 2014.
URL: https : / / datatracker . ietf . org / doc / rfc7252/ (visited on
10/09/2014).

[Sin14] R. Sinnema. The State of REST. 2014.
URL: http://securesoftwaredev.com/2014/11/10/the-state-of-
rest/ (visited on 11/23/2014).

[Sne14] J. Snell. HTTP Link and Unlink Methods: draft-snell-link-method-11. 2014.
URL: https://datatracker.ietf.org/doc/draft-snell-link-method/
(visited on 01/14/2015).

[Soa92] Patr\’ıcia Gomes Soares. „On Remote Procedure Call“. In: Proceedings of
the 1992 Conference of the Centre for Advanced Studies on Collaborative
Research - Volume 2. CASCON ’92. IBM Press, 1992, pp. 215–267.
URL: http://dl.acm.org.eaccess.ub.tum.de/citation.cfm?id=
962260.962276.

[Swi14] K. Swiber. Siren: A hypermedia specification for representing entities.
2014.
URL: https://github.com/kevinswiber/siren (visited on 12/20/2014).

[Tra95] Will Tracz. Confessions of a Used Program Salesman: Institutionalizing
Software Reuse. Boston, MA, and USA: Addison-Wesley Longman Publish-
ing Co., Inc, 1995. ISBN: 0-201-63369-8.

108

https://www.mnot.net/cache%5C_docs
https://tools.ietf.org/html/rfc4287
http://docs.oracle.com/javaee/6/firstcup/doc/gcrky.html
http://docs.oracle.com/javase/tutorial/rmi/overview.html
http://tools.ietf.org/html/rfc1590
http://dx.doi.org/10.1007/978-3-642-35063-4_26
http://dx.doi.org/10.1007/978-3-642-35063-4%5C_26
https://datatracker.ietf.org/doc/rfc7252/
http://securesoftwaredev.com/2014/11/10/the-state-of-rest/
http://securesoftwaredev.com/2014/11/10/the-state-of-rest/
https://datatracker.ietf.org/doc/draft-snell-link-method/
http://dl.acm.org.eaccess.ub.tum.de/citation.cfm?id=962260.962276
http://dl.acm.org.eaccess.ub.tum.de/citation.cfm?id=962260.962276
https://github.com/kevinswiber/siren

[Ulr10] William Ulrich. How Business Rules Relate to Business Processes from a
Business Persons Point of View. Minneapolis, 2010.

[Vin08] S. Vinoski. „Demystifying RESTful Data Coupling“. In: Internet Comput-
ing, IEEE 12.2 (2008), pp. 87–90. ISSN: 1089-7801. DOI: 10.1109/MIC.
2008.33.

[W3C] W3C. Cool URIs don’t change.
URL: http : / / www . w3 . org / Provider / Style / URI . html (visited on
03/11/2014).

[W3C04] W3C Technical Architecture Group. Architecture of the World Wide Web,
Volume One. 2004.
URL: http://www.w3.org/TR/2004/REC-webarch-20041215/ (visited on
10/31/2014).

[WFV00] I. Wijegunaratne, G. Fernandez, and J. Valtoudis. „A federated archi-
tecture for enterprise data integration“. In: Software Engineering Con-
ference, 2000. Proceedings. 2000 Australian. 2000, pp. 159–167. DOI:
10.1109/ASWEC.2000.844573.

[Wil13] E. Wilde. The ’profile’ Link Relation Type: RFC6906. 2013.
URL: http://tools.ietf.org/html/rfc6906 (visited on 12/31/2014).

[Wor14] Wordnik. Swagger 2.0. 2014.
URL: http://swagger.io/ (visited on 01/14/2015).

[WP11] E. Wilde and C. Pautasso. REST: From Research to Practice. Springer,
2011. ISBN: 9781441983039.

[WPR10] J. Webber, S. Parastatidis, and I. Robinson. REST in Practice: Hypermedia
and Systems Architecture. Theory in practice series. O’Reilly Media, 2010.
ISBN: 9781449396923.

109

http://dx.doi.org/10.1109/MIC.2008.33
http://dx.doi.org/10.1109/MIC.2008.33
http://www.w3.org/Provider/Style/URI.html
http://www.w3.org/TR/2004/REC-webarch-20041215/
http://dx.doi.org/10.1109/ASWEC.2000.844573
http://tools.ietf.org/html/rfc6906
http://swagger.io/

	Introduction
	Overview and Use Cases
	Data Model

	Fundamental concepts
	Enterprise Applications
	API Design
	RPC and enterprise application development

	REST from a conceptual perspective
	Defining REST
	Architectural Style
	REST's view of the Web
	What REST is not

	Key concepts of REST
	Resource Identifiers
	Resources
	Representations
	Resource & Application State

	Constraints
	Client-Server
	Stateless
	Caching
	Uniform Interface
	Layered System
	Code On Demand

	Common misconceptions
	Version Management
	Pragmatic REST
	Why not to call it REST

	Implementing the hypermedia strategy
	Elements of a hypermedia representation
	Data Elements
	Control elements

	Semantic types of a hypermedia representation
	Protocol Semantics
	Application Semantics

	Media types
	Aliases and term history
	Media types and hypermedia types
	Media type naming and structure
	Semantic coverage

	Closing the semantic gap
	Embedded documentation
	Concerning machine-driven interaction
	Semantic aliases
	Profile Identifiers
	Profiles
	Reusing machine-readable descriptions

	Towards a Data-Driven Enterprise Resource Architecture
	A new domain ontology
	Problem Domain
	Solution Domain
	Format & protocol domain

	Implementing the domain ontology
	Problem Domain
	Solution domain
	Format domain

	Usage in enterprise application environments

	ERA-Prototype
	Resources & representations
	Parsing representations
	Database interaction
	Persisting representations
	Profiles

	Conclusion
	Summary
	Future work

	ERA-SD
	Maximum skeleton
	Nodes

	ERA-FD
	Maximum skeleton
	Nodes

	Bibliography

